Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
J Ethnopharmacol ; 334: 118516, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971341

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Calotropis gigantea (L.) Dryand. (C. gigantea) is a traditional medicinal plant, recognized for its effectiveness in managing diabetes, along with its notable antioxidant, anti-inflammatory, and anticancer properties. Type II diabetes mellitus (T2DM) is characterized by chronic metabolic disorders associated with an elevated risk of hepatocellular carcinoma (HCC) due to hyperglycemia and impaired insulin response. The scientific validation of C. gigantea's ethnopharmacological efficacy offers advantages in alleviating cancer progression in T2DM complications, enriching existing knowledge and potentially aiding future clinical cancer treatments. AIM: This study aimed to investigate the preventive potential of the dichloromethane fraction of C. gigantea stem bark extract (CGDCM) against diethylnitrosamine (DEN)-induced HCC in T2DM rats, aiming to reduce cancer incidence associated with diabetes while validating C. gigantea's ethnopharmacological efficacy. MATERIALS AND METHODS: Spontaneously Diabetic Torii (SDT) rats were administered DEN to induce HCC (SDT-DEN-VEH), followed by treatment with CGDCM. Metformin was used as a positive control (SDT-DEN-MET). All the treatments were administered for 10 weeks after the initial DEN injection. Diabetes-related parameters, including serum levels of glucose, insulin, and glycosylated hemoglobin (HbA1c), as well as liver function enzymes (aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and gamma-glutamyl transferase), were quantified. Serum inflammation biomarkers interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were evaluated. Liver tissue samples were analyzed for inflammation protein expression (IL-6, TNF-α, transforming growth factor-ß1 (TGF-ß1), and α-smooth muscle actin (α-SMA)). Histopathological evaluation was performed to assess hepatic necrosis, inflammation, and fibrosis. Liver cell proliferation was determined using immunohistochemistry for Ki-67 expression. RESULTS: Rats with SDT-DEN-induced HCC treated with CGDCM exhibited reduced serum glucose levels, elevated insulin levels, and decreased HbA1c levels. CGDCM treatment also reduced elevated hepatic IL-6, TNF-α, TGF-ß1, and α-SMA levels in SDT-DEN-VEH rats. Additionally, CGDCM treatment prevented hepatocyte damage, fibrosis, and cell proliferation. No adverse effects on normal organs were observed with CGDCM treatment, suggesting its safety for the treatment of HCC complications associated with diabetes. Additionally, the absence of adverse effects in SD rats treated with CGDCM at 2.5 mg/kg further supports the notion of its safe usage. CONCLUSIONS: These findings suggest that C. gigantea stem bark extract exerts preventive effects against the development of HCC complications in patients with T2DM, expanding the potential benefits of its ethnopharmacological advantages.

2.
Plants (Basel) ; 13(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38674483

RESUMO

Olibanum, a golden oleo-gum resin from species in the Boswellia genus (Burseraceae family), is a famous traditional herbal medicine widely used around the world. Previous phytochemical studies mainly focused on the non-polar fractions of olibanum. In this study, nine novel diterpenoids, boswellianols A-I (1-9), and three known compounds were isolated from the polar methanolic fraction of the oleo-gum resin of Boswellia carterii. Their structures were determined through comprehensive spectroscopic analysis as well as experimental and calculated electronic circular dichroism (ECD) data comparison. Compound 1 is a novel diterpenoid possessing an undescribed prenylmaaliane-type skeleton with a 6/6/3 tricyclic system. Compounds 2-4 were unusual prenylaromadendrane-type diterpenoids, and compounds 5-9 were new highly oxidized cembrane-type diterpenoids. Compounds 1 and 5 showed significant transforming growth factor ß (TGF-ß) inhibitory activity via inhibiting the TGF-ß-induced phosphorylation of Smad3 and the expression of fibronectin and N-cadherin (the biomarker of the epithelial-mesenchymal transition) in a dose-dependent manner in LX-2 human hepatic stellate cells, indicating that compounds 1 and 5 should be potential anti-fibrosis agents. These findings give a new insight into the chemical constituents of the polar fraction of olibanum and their inhibitory activities on the TGF-ß/Smad signaling pathway.

3.
ACS Appl Mater Interfaces ; 15(46): 53228-53241, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37943281

RESUMO

Nonapoptotic ferroptosis is a promising cancer treatment which offers a solution to the multidrug resistance of conventional apoptosis-induced programmed cancer cell death therapies. Reducing intracellular glutathione (GSH) is essential for inducing excess ROS and has been considered a crucial process to trigger ferroptosis. However, treatments reducing GSH alone have not produced satisfactory effects due to their restricted target. In this regard, FeCDs (Fe3+-modified l-histidine -sourced carbon dots) with dual GSH-consumption capabilities were constructed to engineer ferroptosis by self-amplifying intratumoral oxidative stress. Carbon dots have the ability to consume GSH, and the introduction of Fe3+ can amplify the GSH-consuming ability of CDs, reacting with excess H2O2 in the tumor microenvironment to generate highly oxidized •OH. This is a novel strategy through synergistic self-amplification therapy combining Fe3+ and CDs with GSH-consuming activity. The acid-triggered degradation material (FeCDs@PAE-PEG) was prepared by encapsulating FeCDs in an oil-in-water manner. Compared with other ferroptosis-triggering nanoparticles, the established FeCDs@PAE-PEG is targeted and significantly enhances the consumption efficiency of GSH and accumulation of excess iron without the involvement of infrared light and ultrasound. This synergistic strategy exhibits excellent ferroptosis-inducing ability and antitumor efficacy both in vitro and in vivo and offers great potential for clinical translation of ferroptosis.


Assuntos
Ferroptose , Neoplasias , Humanos , Peróxido de Hidrogênio , Apoptose , Carbono , Glutationa , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio , Microambiente Tumoral
4.
Nanoscale ; 15(25): 10715-10729, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37318099

RESUMO

The low X-ray attenuation coefficient of tumor soft tissue and the hypoxic tumor microenvironment (TME) during radiation therapy (RT) of breast cancer result in RT resistance and thus reduced therapeutic efficacy. In addition, immunosuppression induced by the TME severely limits the antitumor immunity of radiation therapy. In this paper, we propose a PCN-224@IrNCs/D-Arg nanoplatform for the synergistic radiosensitization, photodynamic, and NO therapy of breast cancer that also boosts antitumor immunity (PCN = porous coordination network, IrNCs = iridium nanocrystals, D-Arg = D-arginine). The local tumors can be selectively ablated via reprogramming the tumor microenvironment (TME), photodynamic therapy (PDT) and NO therapy, and the presence of the high-Z element Ir that sensitizes radiotherapy. The synergistic execution of these treatment modalities also resulted in adapted antitumor immune response. The intrinsic immunomodulatory effects of the nanoplatform also repolarize macrophages toward the M1 phenotype and induce dendritic cell maturation, activating antitumor T cells to induce immunogenic cell death as demonstrated in vitro and in vivo. The nanocomposite design reported herein represents a new regimen for the treatment of breast cancer through TME reprogramming to exert a synergistic effect for effective cancer therapy and antitumor immunity.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Microambiente Tumoral , Neoplasias/tratamento farmacológico , Nanopartículas/uso terapêutico , Nanopartículas/química , Terapia de Imunossupressão , Linhagem Celular Tumoral
5.
Int J Biol Macromol ; 229: 885-895, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36603719

RESUMO

Ganoderma lucidum (Ganoderma) is a famous Chinese herbal medicine which has been used clinically for thousands of years in China. Despite numerous studies on triterpenes and polysaccharides, the bioactivity of RNAs abundant in Ganoderma remains unknown. Here, based on LC-MS techniques, dihydrouracil, 5-methyluridine (m5U) and pseudouridine were identified at position 19, 52 and 53 of a new tRNAIle(GAU) which was isolated as the most abundant tRNA species in Ganoderma, and is the first purified tRNA from fungus. Cytotoxic screening of tRNA-half (t-half) and tRNA fragment (tRF) derived from this tRNA, as well as their mimics (t-half or tRF as antisense strand), demonstrated that the double-stranded form, i.e., tRF and t-halve mimics, exhibited stronger cytotoxicity than their single-stranded form, and the cytotoxicity of t-half mimic is significantly stronger than that of tRF mimic. Notably, the cytotoxicity of 3'-t-half mimic is not only much more potent than that of taxol, but also is much more potent than that of ganoderic acids, the major bioactive components in Ganoderma. Furthermore, 3'-t-half mimic_M2 (m5U modified) exhibited significantly stronger cytotoxicity than unmodified 3'-t-half mimic, which is consistent with the computational simulation showing that m5U modification enhances the stability of the tertiary structure of 3'-t-half mimic. Overall, the present study not only indicates t-halves are bioactive components in Ganoderma which should not be neglected, but also reveals an important role of post-transcriptional modification on tRNA in its fragments' cytotoxicity against cancer cells, which benefits the design and development of RNAi drugs from natural resource.


Assuntos
Antineoplásicos , Ganoderma , Neoplasias , Reishi , Triterpenos , Reishi/química , Triterpenos/química , Ganoderma/química , Cromatografia Líquida , Antineoplásicos/farmacologia , RNA de Transferência/genética
6.
Biomed Pharmacother ; 153: 113319, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35753261

RESUMO

As a characteristic transcription factor in solid tumors, hypoxia inducible factor-1 (HIF-1) acts as a master regulator in breast cancer progression. Cryptolepine, as a natural alkaloid, noticeably inhibited HIF-1 transcriptional activity and decreased the protein expression of hypoxia-induced HIF-1α in breast cancer cells. Further study showed that cryptolepine blocked HIF-1-mediated glycolysis and suppressed the expression of multiple glycolysis enzymes, resulting in a decrease in ATP production in hypoxic T47D and 4T1 cells. Meanwhile, cryptolepine displayed potent suppressive effect on tumor growth in a dose-dependent manner. In 4T1 tumor xenografts, cryptolepine reduced HIF-1α protein expression, and thus decreased the levels of both lactate acid and ATP productions. The mechanistic study revealed that cryptolepine could effectively suppress the process of HIF-1α mRNA translation rather than transcription, which was attributed to the inhibition on the phosphorylation of eIF4E regulated by both MAPK and mTOR signaling pathways. Collectively, current findings suggested that cryptolepine possesses the potential to treat breast cancers by modulating HIF-1 both in vitro and in vivo.


Assuntos
Adenocarcinoma , Neoplasias da Mama , Trifosfato de Adenosina/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Feminino , Glicólise , Humanos , Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Alcaloides Indólicos , Quinolinas
7.
mSystems ; 7(2): e0016422, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35400173

RESUMO

tRNAs purified from non-pathogenic Escherichia coli strains (NPECSs) possess cytotoxic properties on colorectal cancer cells. In the present study, the bioactivity of tRNA halves and tRNA fragments (tRFs) derived from NPECSs are investigated for their anticancer potential. Both the tRNA halves and tRF mimics studied exhibited significant cytotoxicity on colorectal cancer cells, with the latter being more effective, suggesting that tRFs may be important contributors to the bioactivities of tRNAs derived from the gut microbiota. Through high-throughput screening, the EC83 mimic, a double-strand RNA with a 22-nucleotide (nt) 5'-tRF derived from tRNA-Leu(CAA) as an antisense chain, was identified as the one with the highest potency (50% inhibitory concentration [IC50] = 52 nM). Structure-activity investigations revealed that 2'-O-methylation of the ribose of guanosine (Gm) may enhance the cytotoxic effects of the EC83 mimic via increasing the stability of its tertiary structure, which is consistent with the results of in vivo investigations showing that the EC83-M2 mimic (Gm modified) exhibited stronger antitumor activity against both HCT-8 and LoVo xenografts. Consistently, 4-thiouridine modification does not. This provides the first evidence that the bioactivity of tRF mimics would be impacted by chemical modifications. Furthermore, the present study provides the first evidence to suggest that novel tRNA fragments derived from the gut microbiota may possess anticancer properties and have the potential to be potent and selective therapeutic molecules. IMPORTANCE While the gut microbiota has been increasingly recognized to be of vital importance for human health and disease, the current literature shows that there is a lack of attention given to non-pathogenic Escherichia coli strains. Moreover, the biological activities of tRNA fragments (tRFs) derived from bacteria have rarely been investigated. The findings from this study revealed tRFs as a new class of bioactive constituents derived from gut microorganisms, suggesting that studies on biological functional molecules in the intestinal microbiota should not neglect tRFs. Research on tRFs would play an important role in the biological research of gut microorganisms, including bacterium-bacterium interactions, the gut-brain axis, and the gut-liver axis, etc. Furthermore, the guidance on the rational design of tRF therapeutics provided in this study indicates that further investigations should pay more attention to these therapeutics from probiotics. The innovative drug research of tRFs as potent druggable RNA molecules derived from intestinal microorganisms would open a new area in biomedical sciences.


Assuntos
Neoplasias Colorretais , RNA de Transferência , Humanos , RNA de Transferência/química , Escherichia coli/genética , Relação Estrutura-Atividade
8.
Biomaterials ; 283: 121413, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35276616

RESUMO

Skin wound is always accompanied with nerve destruction. Due to the limited clinical treatment option, loss of skin sensation with unsatisfactory nerve regeneration is remained to be a challenge for wound therapy. Endogenous mesenchymal stem cells (MSCs) based in situ regeneration, of which, MSCs recruited by chemokines and directed for neuronal differentiation by biological and electrical signals have been thought a novel strategy with potential to accelerate the nerve regeneration and sensory functions recovery. However, most current therapeutic systems usually deliver the chemokines, biological and electrical signals separately and statically, resulting in limited nerve regeneration and sensory functions recovery. Moreover, most of the devices for providing electrical signals need external energy input and complicated practice, leading to poor compliance in patients. To address these issues, we propose a self-powered smart patch (PRG-G-C) to provide chemokine and biological-electrical cues in program. PRG-G-C was composed of a flexible piezoelectric generator to supply electrical stimulation and a conductive gel, which served as the reservoir of chemokine and neural directing exosomes as well as the electrode to transfer electric cue. PRG-G-C was shown to efficiently accelerate rapid nerve regeneration and sensation restoration at the wound site within 23 days. This study demonstrates a proof-to-concept in organizing chemokine, neural directing biological-electrical heterogeneous cues within a self-powered smart patch for accelarating nerve regeneration and sensation restoration, possessing great potential in neural repair applications.


Assuntos
Células-Tronco Mesenquimais , Regeneração Nervosa , Estimulação Elétrica/métodos , Humanos , Regeneração Nervosa/fisiologia , Sensação , Pele
9.
Mol Ther Nucleic Acids ; 27: 718-732, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35317282

RESUMO

Drug discovery from plants usually focuses on small molecules rather than such biological macromolecules as RNAs. Although plant transfer RNA (tRNA)-derived fragment (tRF) has been associated with the developmental and defense mechanisms in plants, its regulatory role in mammals remains unclear. By employing a novel reverse small interfering RNA (siRNA) screening strategy, we show that a tRF mimic (antisense derived from the 5' end of tRNAHis(GUG) of Chinese yew) exhibits comparable anti-cancer activity with that of taxol on ovarian cancer A2780 cells, with a 16-fold lower dosage than that of taxol. A dual-luciferase reporter assay revealed that tRF-T11 directly targets the 3' UTR of oncogene TRPA1 mRNA. Furthermore, an Argonaute-RNA immunoprecipitation (AGO-RIP) assay demonstrated that tRF-T11 can interact with AGO2 to suppress TRPA1 via an RNAi pathway. This study uncovers a new role of plant-derived tRFs in regulating endogenous genes. This holds great promise for exploiting novel RNA drugs derived from nature and sheds light on the discovery of unknown molecular targets of therapeutics.

10.
J Virol ; 96(6): e0214121, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35044216

RESUMO

Due to the high mutation rate of influenza virus and the rapid increase of drug resistance, it is imperative to discover host-targeting antiviral agents with broad-spectrum antiviral activity. Considering the discrepancy between the urgent demand of antiviral drugs during an influenza pandemic and the long-term process of drug discovery and development, it is feasible to explore host-based antiviral agents and strategies from antiviral drugs on the market. In the current study, the antiviral mechanism of arbidol (ARB), a broad-spectrum antiviral drug with potent activity at early stages of viral replication, was investigated from the aspect of hemagglutinin (HA) receptors of host cells. N-glycans that act as the potential binding receptors of HA on 16-human bronchial epithelial (16-HBE) cells were comprehensively profiled for the first time by using an in-depth glycomic approach based on TiO2-PGC chip-Q-TOF MS. Their relative levels upon the treatment of ARB and virus were carefully examined by employing an ultra-high sensitive qualitative method based on Chip LC-QQQ MS, showing that ARB treatment led to significant and extensive decrease of sialic acid (SA)-linked N-glycans (SA receptors), and thereby impaired the virus utilization on SA receptors for rolling and entry. The SA-decreasing effect of ARB was demonstrated to result from its inhibitory effect on sialyltransferases (ST), ST3GAL4 and ST6GAL1 of 16-HBE cells. Silence of STs, natural ST inhibitors, as well as sialidase treatment of 16-HBE cells, resulted in similar potent antiviral activity, whereas ST-inducing agent led to the diminished antiviral effect of ARB. These observations collectively suggesting the involvement of ST inhibition in the antiviral effect of ARB. IMPORTANCE This study revealed, for the first time, that ST inhibition and the resulted destruction of SA receptors of host cells may be an underlying mechanism for the antiviral activity of ARB. ST inhibition has been proposed as a novel host-targeting antiviral approach recently and several compounds are currently under exploration. ARB is the first antiviral drug on the market that was found to possess ST inhibiting function. This will provide crucial evidence for the clinical usages of ARB, such as in combination with neuraminidase (NA) inhibitors to exert optimized antiviral effect, etc. More importantly, as an agent that can inhibit the expression of STs, ARB can serve as a novel lead compound for the discovery and development of host-targeting antiviral drugs.


Assuntos
Indóis , Sialiltransferases , Sulfetos , Antivirais/farmacologia , Antivirais/uso terapêutico , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Células Epiteliais , Glicômica , Hemaglutininas , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Neuraminidase/farmacologia , Polissacarídeos/metabolismo , Sialiltransferases/antagonistas & inibidores , Sulfetos/farmacologia , Sulfetos/uso terapêutico
11.
ACS Omega ; 7(1): 1380-1394, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35036799

RESUMO

An efficient approach for the synthesis of 1,2-diaryl diketones was developed from readily available α-methylene ketones by catalysis of I2. In the same oxidation system, a novel one-pot procedure was established for the construction of antiviral and anticancer quinoxalines. The reactions proceeded well with a wide variety of substrates and good functional group tolerance, affording desired compounds in moderate to excellent yields. Quinoxalines 4ca and 4ad inhibited viral entry of SARS-CoV-2 spike pseudoviruses into HEK-293T-ACE2h host cells as dual blockers of both human ACE2 receptor and viral spike RBD with IC50 values of 19.70 and 21.28 µM, respectively. In addition, cytotoxic evaluation revealed that 4aa, 4ba, 4ia, and 4ab suppressed four cancer cells with IC50 values ranging from 6.25 to 28.55 µM.

12.
Biomater Sci ; 9(24): 8373-8385, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34787604

RESUMO

Nucleic acid drugs have emerged as important therapeutics but their clinical application has been greatly limited by their large molecular weight, high polarity, negative charge and short half-life. Cationic liposomes (CLs) have gained wide attention as non-viral vectors for nucleic acid delivery. However, the absolute transfection efficiency of CLs can still be enhanced while their cytotoxicity should be decreased simultaneously. Ginsenosides, obtained from natural plants, possess a similar steroid structure to cholesterol and might be an alternative to cholesterol for acting as a membrane stabilizer of CLs. Herein, seven kinds of ginsenoside-based compounds were utilized to prepare CLs (GCLs) and their efficacy in siRNA delivery was investigated. The particle sizes of the GCLs were 90-300 nm and the siRNA delivery efficiencies were in the range of 23.6%-78.4%. Rg5-based CLs (Rg5-CLs) exhibited the highest transfection efficiency of 81% and the lowest toxicity, with 82% cell viability obtained even at high concentrations. Ginsenosides are shown as promising biomaterials as membrane stabilizers of CLs. Rg5-CLs have been demonstrated as efficient non-viral vectors with high transfection efficiency and good biocompatibility for gene delivery, possessing great potential for gene therapy.


Assuntos
Ginsenosídeos , Lipossomos , Cátions , Linhagem Celular Tumoral , Transfecção
13.
Nutrients ; 13(11)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34836315

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease characterized by excessive fat accumulation in the liver. The aim of this study is to elucidate the multi-target mechanism of polyphenols in blueberry leaves (PBL) on NAFLD by network pharmacology and to validate its results via biological experiments. Twenty constituents in PBL were preliminarily determined by liquid chromatography-tandem mass spectrometry. Subsequently, 141 predicted drug targets and 1226 targets associated with NAFLD were retrieved from public databases, respectively. The herb-compound-target network and the target protein-protein interaction network (PPI) were established through Cytoscape software, and four compounds and 53 corresponding targets were identified. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed to explore the biological processes of the predicted genes. The results of cell experiments demonstrated that PBL could significantly improve the viability of the NAFLD cell model, and the protein expressions of caspase-3 and Bcl-2 were consistent with the expected mechanism of action of PBL. Those results systematically revealed that the multi-target mechanism of PBL against NAFLD was related to the apoptosis pathway, which could bring deeper reflections into the hepatoprotective effect of PBL.


Assuntos
Apoptose/efeitos dos fármacos , Mirtilos Azuis (Planta) , Farmacologia em Rede , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Polifenóis/uso terapêutico , Mirtilos Azuis (Planta)/química , Caspase 3/genética , Caspase 3/metabolismo , Ontologia Genética , Células Hep G2 , Humanos , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Ácido Palmítico/farmacologia , Fitoterapia , Folhas de Planta/química , Polifenóis/farmacologia , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
14.
Nano Lett ; 21(19): 8151-8159, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34586821

RESUMO

Differentiation of bone marrow derived mesenchymal stem cells (BMSCs) into functional neural cells has been widely investigated for treating neural diseases. However, the limited neural differentiation of BMSCs remains a big challenge to overcome. Herein, for the first time, ginseng-derived exosomes (G-Exos) were demonstrated to have excellent efficiency in stimulating the neural differentiation of BMSCs by transferring the incorporated miRNAs to BMSCs efficiently. In vivo, a photo-cross-linkable hydrogel with chemokine and G-Exos loaded shows strong efficacy in recruiting and directing the neural differentiation of BMSCs in the program. G-Exos were demonstrated to be promising nanoplatforms in transferring plant-derived miRNAs to mammalian stem cells for neural differentiation both in vitro and in vivo, possessing great potential in neural regenerative medicine.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Animais , Diferenciação Celular , Hidrogéis , MicroRNAs/genética
15.
Cell Res ; 31(9): 980-997, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34012073

RESUMO

Pyroptosis is a form of regulated cell death mediated by gasdermin family members, among which the function of GSDMC has not been clearly described. Herein, we demonstrate that the metabolite α-ketoglutarate (α-KG) induces pyroptosis through caspase-8-mediated cleavage of GSDMC. Treatment with DM-αKG, a cell-permeable derivative of α-KG, elevates ROS levels, which leads to oxidation of the plasma membrane-localized death receptor DR6. Oxidation of DR6 triggers its endocytosis, and then recruits both pro-caspase-8 and GSDMC to a DR6 receptosome through protein-protein interactions. The DR6 receptosome herein provides a platform for the cleavage of GSDMC by active caspase-8, thereby leading to pyroptosis. Moreover, this α-KG-induced pyroptosis could inhibit tumor growth and metastasis in mouse models. Interestingly, the efficiency of α-KG in inducing pyroptosis relies on an acidic environment in which α-KG is reduced by MDH1 and converted to L-2HG that further boosts ROS levels. Treatment with lactic acid, the end product of glycolysis, builds an improved acidic environment to facilitate more production of L-2HG, which makes the originally pyroptosis-resistant cancer cells more susceptible to α-KG-induced pyroptosis. This study not only illustrates a pyroptotic pathway linked with metabolites but also identifies an unreported principal axis extending from ROS-initiated DR6 endocytosis to caspase-8-mediated cleavage of GSDMC for potential clinical application in tumor therapy.


Assuntos
Caspase 8 , Proteínas de Ligação a DNA , Neoplasias , Piroptose , Receptores do Fator de Necrose Tumoral , Animais , Caspase 1/metabolismo , Ácidos Cetoglutáricos , Camundongos , Receptores de Morte Celular
16.
Bioorg Chem ; 109: 104740, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33626453

RESUMO

Six new non-classical cardenolides (1-6), and seventeen known ones (7-23) were isolated from Calotropis gigantea. All cardenolides showed inhibitory effect on hypoxia inducible factor-1 (HIF-1) transcriptional activity with IC50 of 8.85 nM-16.69 µM except 5 and 7. The novel 19-dihydrocalotoxin (1) exhibited a comparable HIF-1 inhibitory activity (IC50 of 139.57 nM) to digoxin (IC50 of 145.77 nM), a well-studied HIF-1 inhibitor, and 11, 12, 14, 16 and 19 presented 1.4-15.4 folds stronger HIF-1 inhibition than digoxin. 1 and 11 showed a dose-dependent inhibition on HIF-1α protein, which led to their HIF-1 suppressing effects. Compared with LO2 and H9c2 normal cell lines, both 1 and 11 showed selective cytotoxicity against various cancer cell lines including HCT116, HeLa, HepG2, A549, MCF-7, A2780 and MDA-MB-231. Moreover, a comprehensive structure-activity relationship was concluded for these non-classical cardenolides as HIF-1 inhibitors, which may shed some light on the rational design and development of cardenolide-based anticancer drugs.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Calotropis/química , Cardenolídeos/farmacologia , Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Cardenolídeos/química , Cardenolídeos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Conformação Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Relação Estrutura-Atividade
17.
Front Cell Dev Biol ; 9: 586150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33598459

RESUMO

Liver cancer is the third most common cause of cancer death in the world. POZ/BTB and AT-hook-containing zinc finger protein 1 (PATZ1/MAZR) is a transcription factor associated with various cancers. However, the role of PATZ1 in cancer progression remains controversial largely due to lack of genome-wide studies. Here we report that PATZ1 regulates cell proliferation by directly regulating CDKN1B (p27) in hepatocellular carcinoma cells. Our PATZ1 ChIP-seq and gene expression microarray analyses revealed that PATZ1 is strongly related to cancer signatures and cellular proliferation. We further discovered that PATZ1 depletion led to an increased rate of colony formation, elevated Ki-67 expression and greater S phase entry. Importantly, the increased cancer cell proliferation was accompanied with suppressed expression of the cyclin-dependent kinase inhibitor CDKN1B. Consistently, we found that PATZ1 binds to the genomic loci flanking the transcriptional start site of CDKN1B and positively regulates its transcription. Notably, we demonstrated that PATZ1 is a p53 partner and p53 is essential for CDKN1B regulation. In conclusion, our study provides novel mechanistic insights into the inhibitory role of PATZ1 in liver cancer progression, thereby yielding a promising therapeutic intervention to alleviate tumor burden.

18.
Molecules ; 26(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440779

RESUMO

The aim of this study was to characterize hydrolyzable tannins in Polygonaceous plants, as only a few plants have previously been reported to contain ellagitannins. From Persicaria chinensis, a new hydrolyzable tannin called persicarianin was isolated and characterized to be 3-O-galloyl-4,6-(S)-dehydrohexahydroxydiphenoyl-d-glucose. Interestingly, acid hydrolysis of this compound afforded ellagic acid, despite the absence of a hexahydroxydiphenoyl group. From the rhizome of Polygonum runcinatum var. sinense, a large amount of granatin A, along with minor ellagitannins, helioscpoinin A, davicratinic acids B and C, and a new ellagitannin called polygonanin A, were isolated. Based on 2D nuclear magnetic resonance (NMR) spectroscopic examination, the structure of polygonanin A was determined to be 1,6-(S)-hexahydroxydiphenoyl-2,4-hydroxychebuloyl-ß-d-glucopyranose. These are the second and third hydrolyzable tannins isolated from Polygonaceous plants. In addition, oligomeric proanthocyanidins of Persicaria capitatum and P. chinensis were characterized by thiol degradation. These results suggested that some Polygonaceous plants are the source of hydrolyzable tannins not only proanthocyanidins.


Assuntos
Taninos Hidrolisáveis/análise , Polygonaceae/química , Proantocianidinas/análise , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Polifenóis/análise , Rizoma/química
19.
Nucleic Acids Res ; 49(1): 38-52, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33290562

RESUMO

Acquired drug resistance is a major obstacle in cancer therapy. Recent studies revealed that reprogramming of tRNA modifications modulates cancer survival in response to chemotherapy. However, dynamic changes in tRNA modification were not elucidated. In this study, comparative analysis of the human cancer cell lines and their taxol resistant strains based on tRNA mapping was performed by using UHPLC-MS/MS. It was observed for the first time in all three cell lines that 4-demethylwyosine (imG-14) substitutes for hydroxywybutosine (OHyW) due to tRNA-wybutosine synthesizing enzyme-2 (TYW2) downregulation and becomes the predominant modification at the 37th position of tRNAphe in the taxol-resistant strains. Further analysis indicated that the increase in imG-14 levels is caused by downregulation of TYW2. The time courses of the increase in imG-14 and downregulation of TYW2 are consistent with each other as well as consistent with the time course of the development of taxol-resistance. Knockdown of TYW2 in HeLa cells caused both an accumulation of imG-14 and reduction in taxol potency. Taken together, low expression of TYW2 enzyme promotes the cancer survival and resistance to taxol therapy, implying a novel mechanism for taxol resistance. Reduction of imG-14 deposition offers an underlying rationale to overcome taxol resistance in cancer chemotherapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Paclitaxel/farmacologia , Processamento Pós-Transcricional do RNA/genética , RNA Neoplásico/química , RNA de Transferência de Fenilalanina/química , Células A549 , Sequência de Bases , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Guanosina/análogos & derivados , Guanosina/química , Guanosina/metabolismo , Células HeLa , Humanos , Estrutura Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Conformação de Ácido Nucleico , Neoplasias Ovarianas/patologia , RNA Neoplásico/fisiologia , RNA de Transferência de Fenilalanina/fisiologia , Espectrometria de Massas em Tandem , Ensaio Tumoral de Célula-Tronco
20.
J Pharm Biomed Anal ; 190: 113579, 2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-32871420

RESUMO

Bisphosphonates (BPs) have broad medical applications against osteoporosis, bone metastasis and Paget's disease. The BP-related jaw osteonecrosis limits their use extensively and has a causal relationship with the process of drug disposition, such as deposition on bone and slow elimination rate. Thus it is imperative to accurately determine BP levels in either clinical or pharmacological/toxicological studies. The ability of trimethylsilyl diazomethane (TMSD) to alkylate the hydroxyls in phosphoric groups is an advantage in terms of decreasing polarity and enhancing mass response of BPs. There are, however, practical limitations to the cumbersome sample preparation procedure, the prolonged reaction time, the by-products and the obstacle to ionization. To overcome these disadvantages, a simplified and rapid precolumn derivatization method with N-(tert-Butyldimethylsilyl)-N-methyl-trifluoroacetamide (MTBSTFA) to quantify etidronate, clodronate, alendronate and zoledronate BPs in rat plasma was established in this work. The derivatization reaction was conducted within 2 min at room temperature, and the unitary di-tert-butyldimethylsilyl (di-tBDMS) derivative was obtained for each BP. Derivatives were separated on a XTerra® MS C8 column (2.1 × 50 mm, 3.5 µm) with the mobile phase of 5 mM ammonium acetate buffer (pH 8.5) and acetonitrile, then detected using electrospray ionization tandem mass spectrometry in negative mode. An easy extraction process instead of the time-consuming solid-phase extraction (SPE) was employed for plasma treatment. The proposed method showed good linearity for BPs over the range of 2-500 ng/mL in 20 µL plasma and high sensitivity owing to the larger molecular ions, higher ionization capacity and more stable fragments of di-tBDMS derivatives. The intra- and inter-batch precision were <13.1 %, and the accuracy ranged within ±10 %. The extraction recovery varied from 75.4 to 88.0 %. The optimized method was successfully applied to characterize the pharmacokinetic profile of zoledronate in rats. Moreover, it is a promising approach for the determination of other phosphoric acid-containing metabolites.


Assuntos
Difosfonatos , Preparações Farmacêuticas , Acetamidas , Animais , Cromatografia Líquida , Fluoracetatos , Ratos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA