Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1272: 341522, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37355338

RESUMO

The interesting adsorption affinity of two-dimensional nanosheets to single stranded over double stranded nucleic acids have stimulated the exploration of these materials in biosensing. Herein, MoS2 nanosheets decorated anodic aluminum oxide (AAO) membrane was simply prepared by suction filtration. The MoS2/AAO hybrid membrane was initially applied to the electrochemical detection of microRNA using let-7a as the model. When let-7a was incubated with its complementary DNA, double stranded DNA-RNA formed and which displayed weak adsorption capability to the hybrid membrane. And thus the steric effect combining the electrostatic repulsion of the backbone phosphate of nucleic acids for [Fe(CN)6]3- transport across the hybrid membrane varied with the concentration of let-7a. In this way, a label-free electrochemical detection method for microRNA was established by monitoring the change of the redox current of [Fe(CN)6]3-. To further improve the detection sensitivity of the method, we proposed two separate strategies focusing on the amplification of the target-induced steric hindrance with DNA nanostructure and the magnification of the electrode sensitivity for [Fe(CN)6]3- by electrode modification. By using the two strategies, the hybrid membrane based-detection method exhibited broad linear range, low detection limit and good selectivity as well as reproducibility. Therefore, this study provided a proof-of-concept for the application of two-dimensional material to nucleic acids detection.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Óxido de Alumínio/química , Molibdênio/química , Reprodutibilidade dos Testes , Limite de Detecção , DNA/química , Eletrodos , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos
2.
Anal Chim Acta ; 1239: 340690, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36628709

RESUMO

Sensitive and accurate detection of tumor suppressor genes is vastly important to the related therapeutic research. Herein, a ratiometric electrochemical method for let-7a detection was established by integrating a ferrocene (Fc) doped MoS2 nanoplates modified electrode into the nanochannels-based biosensing platform. The ratiometric signal was developed by the redox current of methylene blue (MB) which reflects the target recognition occurred into the nanochannels and the redox current of Fc which corrects the slight signal deviation caused by some analyte-independent factors. And thus, the ratio of peak current of MB and Fc (IMB/IFc) measured at differential pulse voltammogram varied precisely with the increment of the concentration of let-7a incubated in the bioinspired nanochannels. The strategy of spherical DNAzyme induced deposition in nanochannels was utilized to further amplify the signal. Under optimal conditions, a wide linear dynamic range of 50 aM to 10 pM spanning five orders of magnitude was obtained. The developed electrochemical method, with attomole level of detection limit, was successfully applied to the determination of let-7a in human serum and tumor cells. The study not only offers a new route for reliable nucleic acid detection, but also provides an excellent opportunity to extend the application of the two-dimensional transition-metal dichalcogenides.


Assuntos
Técnicas Biossensoriais , Molibdênio , Humanos , Metalocenos , Ouro , Técnicas Biossensoriais/métodos , Limite de Detecção , Técnicas Eletroquímicas/métodos , Azul de Metileno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA