Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Adv Sci (Weinh) ; : e2309569, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973195

RESUMO

Radiotherapy plays a vital role in cancer therapy. However, the hypoxic microenvironment of tumors greatly limits the effectiveness, thus it is crucial to develop a simple, efficient, and safe radiosensitizer to reverse hypoxia and ameliorate the efficacy of radiotherapy. Inspired by the structure of canonical nanodrug Abraxane, herein, a native HSA-modified CaO2 nanoparticle system (CaO2-HSA) prepared by biomineralization-induced self-assembly is developed. CaO2-HSA will accumulate in tumor tissue and decompose to produce oxygen, altering the hypoxic condition inside the tumor. Simultaneously, ROS and calcium ions will lead to calcium overload and further trigger immunogenic cell death. Notably, its sensitizing enhancement ratio (SER = 3.47) is much higher than that of sodium glycididazole used in the clinic. Furthermore, in animal models of in situ oral cancer, CaO2-HSA can effectively inhibit tumor growth. With its high efficacy, facile preparation, and heavy-metal free biosafety, the CaO2-HSA-based radiosensitizer holds enormous potential for oral cancer therapy.

2.
J Cancer ; 15(9): 2746-2758, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577602

RESUMO

Purpose: To explore the effects of miR-383-5p and serine hydroxymethyltransferase 2 (SHMT2) on the proliferation and migration of lung adenocarcinoma cells. Methods: SHMT2 expression in lung adenocarcinoma and normal tissues was investigated using The Cancer Genome Atlas database. Immunohistochemical analysis was performed to confirm SHMT2 expression in lung adenocarcinoma and adjacent normal lung tissues. Bioinformatics analysis and luciferase reporter assays were used to analyze the relationship between miR-383-5p and SHMT2 expression. The protein expression levels of SHMT2, vimentin, N-cadherin, E-cadherin, Bcl-2, and cyclinD1 were analyzed using western blotting. The reverse transcription-quantitative polymerase chain reaction was used to detect SHMT2 knockdown efficiency, miR-383-5p overexpression, and inhibition efficiency. The proliferative ability of cells was detected using the Cell Counting Kit-8 assay. The Transwell assay was used to detect the migration ability of cells. Results: SHMT2 expression was significantly increased in patients with lung adenocarcinoma compared to that in control patients; the higher the SHMT2 expression the worse the outcomes were in patients with lung adenocarcinoma. SHMT2 knockdown inhibited the proliferation, migration, and epithelial-mesenchymal transition of lung adenocarcinoma A549 and H1299 cells. MiR-383-5p directly targeted and downregulated SHMT2 in A549 and H1299 cells. The effects of miRNA-383-5p on the proliferation and migration of these cells differed from those of SHMT2. Exogenous overexpression of SHMT2 reversed the miR-383-5p-induced proliferation and migration inhibition in A549 and H1299 cells. Conclusion: MiR-383-5p inhibits the proliferation and migration of lung adenocarcinoma cells by targeting and downregulating SHMT2.

3.
Int Immunopharmacol ; 120: 110417, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37276826

RESUMO

Immunotherapy based on immune checkpoint inhibitors (ICIs) has revolutionized treatment strategies in multiple types of cancer. However, the resistance and relapse as associated with the extreme complexity of cancer-immunity interactions remain a major challenge to be resolved. Owing to the epigenome plasticity of cancer and immune cells, a growing body of evidence has been presented indicating that epigenetic treatments have the potential to overcome current limitations of immunotherapy, thus providing a rationalefor the combination of ICIs with epigenetic agents (epidrugs). In this review, we first make an overview about the epigenetic regulations in tumor biology and immunodevelopment. Subsequently, a diverse array of inhibitory agents under investigations targeted epigenetic modulators (Azacitidine, Decitabine, Vorinostat, Romidepsin, Belinostat, Panobinostat, Tazemetostat, Enasidenib and Ivosidenib, etc.) and immune checkpoints (Atezolizmab, Avelumab, Cemiplimab, Durvalumb, Ipilimumab, Nivolumab and Pembrolizmab, etc.) to increase anticancer responses were described and the potential mechanisms were further discussed. Finally, we summarize the findings of clinical trials and provide a perspective for future clinical studies directed at investigating the combination of epidrugs with ICIs as a treatment for cancer.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Nivolumabe/uso terapêutico , Ipilimumab/uso terapêutico , Imunoterapia
4.
Thorac Cancer ; 14(10): 913-928, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36808485

RESUMO

BACKGROUND: The present study aimed to investigate the function of miR-3529-3p in lung adenocarcinoma and MnO2 -SiO2 -APTES (MSA) as a promising multifunctional delivery agent for lung adenocarcinoma therapy. METHODS: Expression levels of miR-3529-3p were evaluated in lung carcinoma cells and tissues by qRT-PCR. The effects of miR-3529-3p on apoptosis, proliferation, metastasis and neovascularization were assessed by CCK-8, FACS, transwell and wound healing assays, tube formation and xenografts experiments. Luciferase reporter assays, western blot, qRT-PCR and mitochondrial complex assay were used to determine the targeting relationship between miR-3529-3p and hypoxia-inducible gene domain family member 1A (HIGD1A). MSA was fabricated using MnO2 nanoflowers, and its heating curves, temperature curves, IC50, and delivery efficiency were examined. The hypoxia and reactive oxygen species (ROS) production was investigated by nitro reductase probing, DCFH-DA staining and FACS. RESULTS: MiR-3529-3p expression was reduced in lung carcinoma tissues and cells. Transfection of miR-3529-3p could promote apoptosis and suppress cell proliferation, migration and angiogenesis. As a target of miR-3529-3p, HIGD1A expression was downregulated, through which miR-3529-3p could disrupt the activities of complexes III and IV of the respiratory chain. The multifunctional nanoparticle MSA could not only efficiently deliver miR-3529-3p into cells, but also enhance the antitumor function of miR-3529-3p. The underlying mechanism may be that MSA alleviates hypoxia and has synergistic effects in cellular ROS promotion with miR-3529-3p. CONCLUSIONS: Our results establish the antioncogenic role of miR-3529-3p, and demonstrate that miR-3529-3p delivered by MSA has enhanced tumor suppressive effects, probably through elevating ROS production and thermogenesis.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Nanopartículas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Dióxido de Silício/metabolismo , Compostos de Manganês , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Óxidos/farmacologia , Óxidos/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/terapia , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo , Proliferação de Células/genética , Fototerapia , Regulação Neoplásica da Expressão Gênica
5.
J Biomed Mater Res A ; 110(10): 1636-1644, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35603761

RESUMO

Mechanical microenvironments, such as characteristics defining mechanical environments and fluid flow play an important role in steering the fate of mesenchymal stem cells (MSCs). However, the synergistic effect of adhesion morphology and fluid flow on the biological behavior of MSCs is seldom investigated. In this article, 0.5 or 0.8 Pa fluid shear stress (FSS) was applied to the MSCs on micropatterned substrates, and the apoptosis and osteogenic differentiation of MSCs were measured by double fluorescent staining. Results showed that the cellular adhesion patterns with low circularity and large area are beneficial to the osteogenic differentiation of individual MSCs. Meanwhile, FSS facilitated osteogenic differentiation of MSCs, as shown by the expression of alkaline phosphatase, osteocalcin, and collagen I. In addition, nuclear transfer of Yes-associated protein, a transcriptional regulator in MSCs, was enhanced after being exposed to FSS. These results demonstrated the synergistic effects of FSS and adhesion morphology in directing the fate of MSCs, and these effects may be adopted to design bio-functional substrates for cell transplantation in tissue engineering.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Apoptose , Diferenciação Celular , Células Cultivadas , Estresse Mecânico
6.
Health Sci Rep ; 4(3): e376, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34541334

RESUMO

INTRODUCTION: Over the past decade, we have witnessed the initiation and implementation of precision medicine (PM), a discipline that promises to individualize and personalize medical management and treatment, rendering them ultimately more precise and effective. Despite of the continuing advances and numerous clinical applications, the potential of PM remains highly controversial, sparking heated debates about its future. METHOD: The present article reviews the philosophical issues and practical challenges that are critical to the feasibility and implementation of PM. OUTCOME: The explanation and argument about the relations between PM and computability, uncertainty as well as complexity, show that key foundational assumptions of PM might not be fully validated. CONCLUSION: The present analysis suggests that our current understanding of PM is probably oversimplified and too superficial. More efforts are needed to realize the hope that PM has elicited, rather than make the term just as a hype.

7.
Cell Death Dis ; 12(8): 735, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301920

RESUMO

Non-coding RNAs (ncRNAs) involve in diverse biological processes by post-transcriptional regulation of gene expression. Emerging evidence shows that miRNA-4293 plays a significant role in the development of non-small cell lung cancer. However, the oncogenic functions of miR-4293 have not been studied. Our results demonstrated that miR-4293 expression is markedly enhanced in lung carcinoma tissue and cells. Moreover, miR-4293 promotes tumor cell proliferation and metastasis but suppresses apoptosis. Mechanistic investigations identified mRNA-decapping enzyme 2 (DCP2) as a target of miR-4293 and its expression is suppressed by miR-4293. DCP2 can directly or indirectly bind to WFDC21P and downregulates its expression. Consequently, miR-4293 can further promote WFDC21P expression by regulating DCP2. With a positive correlation to miR-4293 expression, WFDC21P also plays an oncogenic role in lung carcinoma. Furthermore, knockdown of WFDC21P results in functional attenuation of miR-4293 on tumor promotion. In vivo xenograft growth is also promoted by both miR-4293 and WFDC21P. Overall, our results establish oncogenic roles for both miR-4293 and WFDC21P and demonstrate that interactions between miRNAs and lncRNAs through DCP2 are important in the regulation of carcinoma pathogenesis. These results provided a valuable theoretical basis for the discovery of lung carcinoma therapeutic targets and diagnostic markers based on miR-4293 and WFDC21P.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Regulação para Cima/genética , Adulto , Idoso , Animais , Apoptose/genética , Sequência de Bases , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Modelos Biológicos , Ligação Proteica , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/metabolismo
8.
J Biomed Mater Res A ; 108(10): 2080-2089, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32319192

RESUMO

The topography of extracellular matrix regulates the differentiation of mesenchymal stem cells (MSCs). In particular, the effect of spreading shape or area on cellular differentiation and viability of individual MSCs cultured in the confined adhesive regions is an interesting fundamental issue. In this study, the adhesive patterns with the circularity of 0.1 or 1 and the areas of 314; 628; 1,256; or 2,512 µm2 were constructed using micropatterning technology. The expression of osteogenesis marker alkaline phosphatase and the apoptosis level of individual MSCs were measured using double fluorescent staining. Results indicated that individual MSCs confined in the small area showed an apoptotic tendency, and those in the large area might enter into osteogenesis. The branched shape with small circularity increased MSC viability but reduced their pluripotency compared with the circular shape. The expression of other osteogenesis markers, such as osteocalcin and Collagen I, confirmed that large and branched pattern promoted MSC osteogenesis. In addition, the transcriptional coactivator yes-associated protein (YAP) was transferred higher in the nuclei of the large and branched cells than other micropatterned groups. This study suggested that the spreading area and shape of individual MSCs regulate their viability and osteogenesis through the YAP pathway.


Assuntos
Apoptose , Células-Tronco Mesenquimais/citologia , Osteogênese , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Adesão Celular , Linhagem Celular , Movimento Celular , Forma Celular , Camundongos , Propriedades de Superfície
9.
BMC Cancer ; 18(1): 658, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29907144

RESUMO

BACKGROUND: CHD5 is a conventional tumour-suppressing gene in many tumours. The aim of this study was to determine whether CHD5 variants contribute to the risk of hepatocellular carcinoma (HCC). METHODS: Gene variants were identified using next-generation sequencing targeted on referenced mutations followed by TaqMan genotyping in two case-control studies. RESULTS: We discovered a rare variant (haplotype AG) in CHD5 (rs12564469-rs9434711) that was markedly associated with the risk of HCC in a Chinese population. A logistical regression model and permutation test confirmed the association. Indeed, the association quality increased in a gene dose-dependent manner as the number of samples increased. In the stratified analysis, this haplotype risk effect was statistically significant in a subgroup of alcohol drinkers. The false-positive report probability and multifactor dimensionality reduction further supported the finding. CONCLUSIONS: Our results suggest that the rare CHD5 gene haplotype and alcohol intake contribute to the risk of HCC. Our findings can be valuable to researchers of cancer precision medicine looking to improve diagnosis and treatment of HCC.


Assuntos
Carcinoma Hepatocelular/genética , DNA Helicases/genética , Neoplasias Hepáticas/genética , Proteínas do Tecido Nervoso/genética , Adulto , Idoso , Consumo de Bebidas Alcoólicas/efeitos adversos , Povo Asiático/genética , Estudos de Casos e Controles , Feminino , Interação Gene-Ambiente , Predisposição Genética para Doença , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
10.
Oncol Rep ; 39(6): 2969-2977, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29658603

RESUMO

Despite huge advances in lung cancer treatment, resistance to cisplatin­based chemotherapy remains one of the major obstacles, and the elucidation of cisplatin resistance remains challenging. As an important biological and pharmacological mediator, hydrogen sulfide (H2S) performs a variety of homeostatic functions related to cancer formation and development. However, the effects of H2S on cisplatin­resistance lung cancer remain largely unknown. In the present study, we investigated the anticancer effects and relevant mechanisms of NaHS (an exogenous donor of H2S) on A549/DDP cells (cisplatin­resistant). The intracellular H2S was first evaluated using a fluorescence probe in A549 (cisplatin­sensitive) and A549/DDP cells. We found that H2S production was markedly decreased in A549/DDP cells compared with that in A549 cells, accomplished by the downregulation of cystathionine ß­synthase (CBS), an endogenous H2S­producing enzyme. In view of these findings, we then observed the effects of NaHS treatment on A549/DDP cells. The results showed that NaHS exposure exhibited an inhibitory effect on cell viability and the IC50 of cisplatin in A549/DDP cells decreased markedly during NaHS treatment (800 µmol/l). In addition, our data revealed that NaHS treatment of A549/DDP cells resulted in the induction of apoptosis, cell cycle arrest and inhibition of cell migration and invasion. Finally, we demonstrated that the marked changes in the A549/DDP cell response to NaHS may be triggered by the activation of p53, and overexpression of p21, caspase­3, Bax and MMP­2, as well as the downregulation of Bcl­xL. The findings of the present study provide novel evidence that NaHS administration may represent a new strategy for the treatment of cisplatin­resistant lung cancer.


Assuntos
Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sulfeto de Hidrogênio/metabolismo , Neoplasias Pulmonares/metabolismo , Sulfetos/farmacologia , Células A549 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cistationina beta-Sintase/metabolismo , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos
11.
Biochem Biophys Res Commun ; 490(2): 147-154, 2017 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-28602698

RESUMO

Early growth response factor 1 (Egr-1) is a zinc finger transcription factor which responses rapidly to a variety of extracellular stimuli. Previous studies have suggested that Egr-1 exerts pathological functions in chronic obstructive pulmonary disease (COPD) by regulation of cigarette smoking-induced autophagy, cell death, and inflammation. However, little is known about the role of Egr-1 in regulation of mucus production in airway epithelium. In this study, we observed that cigarette smoke extract (CSE) induced a successive expression of Egr-1 and MUC5AC in human bronchial epithelial (HBE) cells. Knockdown of Egr-1 markedly attenuated CSE-induced MUC5AC production, and chromatin immunoprecipitation revealed that Egr-1 transcriptionally bound to MUC5AC promoter upon CSE stimulation. Concurrently, CSE increased the expression of c-Jun and c-Fos, two subunits of activator protein 1 (AP-1) which also critically regulates CSE-induced MUC5AC in HBE cells. CSE also induced a physical interaction of Egr-1 and AP-1, and knockdown of Egr-1 significantly decreased CSE-induced expression of c-Fos and c-Jun. Furthermore, knockdown of c-Fos remarkably attenuated the CSE-induced Egr-1 binding to MUC5AC promoter. These data taken together demonstrate that Egr-1 is essential for CSE-induced MUC5AC production in HBE cells likely through interaction with and modulation of AP-1, and re-emphasize targeting Egr-1 as a novel therapeutic strategy for COPD.


Assuntos
Brônquios/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Células Epiteliais/metabolismo , Mucina-5AC/genética , Fumar , Brônquios/patologia , Células Cultivadas , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/isolamento & purificação , Células Epiteliais/patologia , Humanos , Mucina-5AC/metabolismo
12.
Sheng Li Xue Bao ; 68(3): 276-84, 2016 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-27350200

RESUMO

Previously, we have reported that transcription factor E2F1 expression is up-regulated in approximately 95% of small cell lung cancer tissue samples and closely associated with invasion and metastasis, but few studies have investigated specific target genes regulated by E2F1 in this disease. The aim of this study was to clarify the target genes controlled by E2F1 in the small cell lung cancer cell line H1688. The results of chromatin immunoprecipitation sequencing (ChIP-seq) showed that total 5 326 potential target genes were identified, in which 4 700 were structural genes and 626 long non-coding RNAs (lncRNAs). Gene Ontology (GO) and enrichment map analysis results indicated that these target genes were associated with three main functions: (1) cell cycle regulation, (2) chromatin and histone modification, and (3) protein transport. MEME4.7.0 software was used to identify the E2F1 binding DNA motif, and six motifs were discovered for coding genes and lncRNAs. These results clarify the target genes of E2F1, and provide the experimental basis for further exploring the roles of E2F1 in tumorigenesis, development, invasion and metastasis, recurrence, and drug resistance in small cell lung cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Cromatina , Fator de Transcrição E2F1 , Humanos , Regulação para Cima
13.
Adv Mater ; 28(17): 3351-8, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26928813

RESUMO

Flexible thin films of poly(nickel-ethylenetetrathiolate) prepared by an electrochemical method display promising n-type thermoelectric properties with the highest ZT value up to 0.3 at room temperature. Coexistence of high electrical conductivity and high Seebeck coefficient in this coordination polymer is attributed to its degenerate narrow-bandgap semiconductor behavior.

14.
Am J Physiol Lung Cell Mol Physiol ; 306(11): L1016-25, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24727585

RESUMO

Autophagy plays a pivotal role in cellular homeostasis and adaptation to adverse environments, although the regulation of this process remains incompletely understood. We have recently observed that caveolin-1 (Cav-1), a major constituent of lipid rafts on plasma membrane, can regulate autophagy in cigarette smoking-induced injury of lung epithelium, although the underlying molecular mechanisms remain incompletely understood. In the present study we found that Cav-1 interacted with and regulated the expression of ATG12-ATG5, an ubiquitin-like conjugation system crucial for autophagosome formation, in lung epithelial Beas-2B cells. Deletion of Cav-1 increased basal and starvation-induced levels of ATG12-ATG5 and autophagy. Biochemical analyses revealed that Cav-1 interacted with ATG5, ATG12, and their active complex ATG12-ATG5. Overexpression of ATG5 or ATG12 increased their interactions with Cav-1, the formation of ATG12-ATG5 conjugate, and the subsequent basal levels of autophagy but resulted in decreased interactions between Cav-1 and another molecule. Knockdown of ATG12 enhanced the ATG5-Cav-1 interaction. Mutation of the Cav-1 binding motif on ATG12 disrupted their interaction and further augmented autophagy. Cav-1 also regulated the expression of ATG16L, another autophagy protein associating with the ATG12-ATG5 conjugate during autophagosome formation. Altogether these studies clearly demonstrate that Cav-1 competitively interacts with the ATG12-ATG5 system to suppress the formation and function of the latter in lung epithelial cells, thereby providing new insights into the molecular mechanisms by which Cav-1 regulates autophagy and suggesting the important function of Cav-1 in certain lung diseases via regulation of autophagy homeostasis.


Assuntos
Células Epiteliais Alveolares/fisiologia , Autofagia , Caveolina 1/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sequência de Aminoácidos , Animais , Proteína 12 Relacionada à Autofagia , Proteína 5 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Ligação Competitiva , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caveolina 1/genética , Linhagem Celular , Citoplasma/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética
15.
PLoS One ; 9(3): e92190, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24632672

RESUMO

Heparanase promotes tumor invasion and metastasis in several malignancies including breast cancer. However, the roles and regulation mechanisms of heparanase during breast cancer progression are still not fully understood. The aim of this study is to determine the differential regulation of heparanase gene expression in specific stages of breast cancer by DNA methylation. We detected levels of heparanase expression and DNA methylation patterns of its promoter in breast cancer cell lines (MCF-7 and MDA-MB-435) and clinical tissues, respectively. It has been observed that heparanase is highly expressed in the invasive MDA-MB-435 cells with low methylation modification in the heparanase promoter. In contrast, lower expression of heparanase in MCF-7 cells is accompanied by higher methylation in the promoter. Treatment of MCF-7 cells with 5-aza-2'-deoxycytidine (5-aza-dC), a potent demethylating agent, results in induction of heparanase expression and higher invasion potential in vitro and leads to an advantage of tumor formation in vivo. In 54 tissue samples, cancer samples at late stages (stage IV) showed the highest heparanase expression accomplished by little DNA methylation. On the contrary, methylation prevalence is highest in normal tissue and inversely correlated with heparanase expression. A significant correlation between DNA methylation and clinical stage was demonstrated (p = 0.012). Collectively, these results demonstrate that DNA methylation play the regulation role in heparanase gene in different stages of breast cancer and present a direct effect on tumor progression.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Metilação de DNA , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Glucuronidase/genética , Regiões Promotoras Genéticas/genética , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Neoplasias da Mama/enzimologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Proliferação de Células/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Decitabina , Humanos , Células MCF-7 , Invasividade Neoplásica
16.
Sci China Life Sci ; 56(6): 503-12, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23666362

RESUMO

Eukaryotic mRNAs consist of two forms of transcripts: poly(A)+ and poly(A)-, based on the presence or absence of poly(A) tails at the 3' end. Poly(A)+ mRNAs are mainly protein coding mRNAs, whereas the functions of poly(A)- mRNA are largely unknown. Previous studies have shown that a significant proportion of gene transcripts are poly(A)- or bimorphic (containing both poly(A)+ and poly(A)- transcripts). We compared the expression levels of poly(A)- and poly(A)+ RNA mRNAs in normal and cancer cell lines. We also investigated the potential functions of these RNA transcripts using an integrative workflow to explore poly(A)+ and poly(A)- transcriptome sequences between a normal human mammary gland cell line (HMEC) and a breast cancer cell line (MCF-7), as well as between a normal human lung cell line (NHLF) and a lung cancer cell line (A549). The data showed that normal and cancer cell lines differentially express these two forms of mRNA. Gene ontology (GO) annotation analyses hinted at the functions of these two groups of transcripts and grouped the differentially expressed genes according to the form of their transcript. The data showed that cell cycle-, apoptosis-, and cell death-related functions corresponded to most of the differentially expressed genes in these two forms of transcripts, which were also associated with the cancers. Furthermore, translational elongation and translation functions were also found for the poly(A)- protein-coding genes in cancer cell lines. We demonstrate that poly(A)- transcripts play an important role in cancer development.


Assuntos
Perfilação da Expressão Gênica , Genoma Humano/genética , Poli A/genética , RNA Mensageiro/genética , Proteínas Reguladoras de Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Humanos , Pulmão/citologia , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Células MCF-7 , Poli A/metabolismo , Biossíntese de Proteínas/genética , RNA Mensageiro/classificação , RNA Mensageiro/metabolismo
17.
J Cancer Res Ther ; 8(3): 348-54, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23174713

RESUMO

Anticancer drugs such as biological therapeutic proteins and peptides are used for treatment of a variety of tumors. However, their wider use has been hindered by their poor bioavailability and the uncontrollable sites of action in vivo. Cancer nano-therapeutics is rapidly progressing, which is being applied for solving some limitations of conventional drug delivery systems. To improve the bio-distribution of anticancer drugs, carbon nanotubes have been used as one of the most effective drug carriers. This review discusses the carbon nanotubes-mediated methods for the delivery of anticancer drugs, with emphasis on the radiation-induced drug-targeted releasing and selective photo-thermal cancer therapy.


Assuntos
Portadores de Fármacos/uso terapêutico , Raios gama/uso terapêutico , Raios Infravermelhos/uso terapêutico , Nanotubos de Carbono , Neoplasias/tratamento farmacológico , Humanos , Hipertermia Induzida , Neoplasias/radioterapia
18.
Cell Reprogram ; 14(4): 324-33, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22775353

RESUMO

Mesenchymal stem cells (MSCs) have been isolated from many sources, including adults and fetuses. Previous studies have demonstrated that, compared with their adult counterpart, fetal MSCs with several remarkable advantages may be a better resource for clinical applications. In this study, we successfully isolated a rapidly proliferating cell population from limb bud of aborted fetus and termed them "human limb bud-derived mesenchymal stem cells" (hLB-MSCs). Characteristics of their morphology, phenotype, cell cycle, and differentiation properties were analyzed. These adherent cell populations have a typically spindle-shaped morphology. Flow cytometry analysis showed that hLB-MSCs are positive for CD13, CD29, CD90, CD105, and CD106, but negative for CD3, CD4, CD5, CD11b, CD14, CD15, CD34, CD45, CD45RA, and HLA-DR. The detection of cell cycle from different passages indicated that hLB-MSCs have a similar potential for propagation during long culture in vitro. The most novel finding here is that, in addition to their mesodermal differentiation (osteoblasts and adipocytes), hLB-MSCs can also differentiated into extramesenchymal lineages, such as neural (ectoderm) and hepatic (endoderm) progenies. These results indicate that hLB-MSCs have a high level of plasticity and can differentiate into cell lineages from all three embryonic layers in vitro.


Assuntos
Feto Abortado/citologia , Diferenciação Celular , Camadas Germinativas/citologia , Botões de Extremidades/citologia , Células-Tronco Mesenquimais/citologia , Feto Abortado/metabolismo , Animais , Antígenos de Diferenciação/metabolismo , Camadas Germinativas/metabolismo , Humanos , Botões de Extremidades/metabolismo , Células-Tronco Mesenquimais/metabolismo
19.
Sheng Li Xue Bao ; 64(1): 55-61, 2012 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-22348961

RESUMO

Cyclin D1, as a regulatory factor in cell cycle, is highly expressed in many tumors, such as lung cancer, breast cancer and thyroid cancer. The aim of the present study was to study the role of Cyclin D1 in invasion and metastasis of lung cancer cells. Lung adenocarcinoma cell line A549 and squamous cell line SK-MES-1 were selected as the objects, because A549 expresses Cyclin D1 highly, and SK-MES-1 expresses lowly. Nude mice were injected with A549 or SK-MES-1 via tail vein, and were sacrificed after 4 weeks for cancer tissue isolation. The harvested cancer cells were reinjected into another nude mouse. After one more time of such seeding, highly metastatic lung cancer model was established. After A549 and SK-MES-1 were transfected with Cyclin D1 RNAi and expression vector respectively, transwell migration assay was used to analyze transferring capacity of lung cancer cells. Western blot was used to detect Cyclin D1 and WNT/TCF pathway proteins expressions in parental cell lines and cancer tissue from metastasis model animals. The results showed that, along with the increase of seeding times, lung cancer cells from model animals, no matter A549 or SK-MES-1, exhibited augmented metastasis activity and up-regulated Cyclin D1 expression. The transferring capacity was weakened significantly in A549 cells where the Cyclin D1 was interfered by RNAi, and it was enhanced significantly in SK-MES-1 cells which were transfected with the expression vector of Cyclin D1. The expressions of WNT/TCF pathway proteins, including ß-catenin, lymphoid enhancer-binding factor (LEF) and T cell factor (TCF), increased significantly in highly metastatic model animals. The parental cell lines showed lower expressions of WNT/TCF pathway proteins compared with cancer tissue from metastasis model animals. These results suggest that Cyclin D1 is closely related with the invasion and metastasis of lung cancer cells, and the WNT/TCF signal pathway may promote the expression of Cyclin D1.


Assuntos
Adenocarcinoma/patologia , Ciclina D1/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Via de Sinalização Wnt , Adenocarcinoma/metabolismo , Animais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Ciclina D1/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Interferência de RNA , Transfecção
20.
Mol Med Rep ; 5(1): 66-72, 2012 01.
Artigo em Inglês | MEDLINE | ID: mdl-21922142

RESUMO

There is mounting evidence that garlic extracts possess significant anticancer actions. However, no studies have been reported on the effects of aged black garlic extracts (ABGE) on gastric cancer in vitro or in vivo. To examine the potential action of ABGE against gastric cancer, the present study evaluated its effect on the inhibition of cell proliferation and induction of apoptosis in SGC-7901 human gastric cancer cells. Additionally, we performed an in vivo study by inoculating the murine foregastric carcinoma cell line in Kunming mice and treating them with various doses of ABGE (0, 200, 400 and 800 mg/kg, intraperitoneally) for 2 weeks. Dose-dependent apoptosis was detected in ABGE-treated cells in in vitro studies. In tumor-bearing mice, significant antitumor effects of ABGE were observed, such as growth inhibition of inoculated tumors. Further investigation of serum superoxide dismutases, glutathione peroxidase, interleukin-2 and the increased indices of spleen and thymus indicated that the anticancer action of ABGE may be partly due to its antioxidant and immunomodulative effects.


Assuntos
Alho/química , Extratos Vegetais/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Glutationa Peroxidase/sangue , Humanos , Interleucina-2/sangue , Masculino , Camundongos , Neoplasias Gástricas , Superóxido Dismutase/sangue , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA