RESUMO
BACKGROUND/AIMS: This systematic review critically evaluated peer-reviewed publications describing morphological features consistent with, or using terms related to, a 'neuroma' or 'microneuroma' in the human cornea using laser-scanning in vivo confocal microscopy (IVCM). METHODS: The review was prospectively registered on PROSPERO (CRD42020160038). Comprehensive literature searches were performed in Ovid MEDLINE, Ovid Embase and the Cochrane Library in November 2019. The review included primary research studies and reviews that described laser-scanning IVCM for examining human corneal nerves. Papers had to include at least one of a pre-specified set of keyword stems, broadly related to neuromas and microneuromas, to describe a corneal nerve feature. RESULTS: Twenty-five papers (20 original studies; 5 reviews) were eligible. Three original studies evaluated corneal nerve features in healthy eyes. Most papers assessed corneal nerves in ocular and systemic conditions; seven studies did not include a control/comparator group. There was overlap in terminology used to describe nerve features in healthy and diseased corneas (eg, bulb-like/bulbous, penetration, end/s/ing). Inspection of IVCM images within the papers revealed that features termed 'neuromas' and 'microneuromas' could potentially be physiological corneal stromal-epithelial nerve penetration sites. We identified inconsistent definitions for terms, and limitations in IVCM image acquisition, sampling and/or reporting that may introduce bias and lead to inaccurate representation of physiological nerve characteristics as pathological. CONCLUSION: These findings identify a need for consistent nomenclature and definitions, and rigorous IVCM scanning and analysis protocols to clarify the prevalence of physiological, as opposed to pathological, corneal nerve features.
Assuntos
Córnea , Neuroma , Córnea/patologia , Substância Própria , Humanos , Lasers , Microscopia Confocal/métodos , Neuroma/patologiaRESUMO
Purpose: Dysregulation of the complement cascade contributes to a variety of retinal dystrophies, including age-related macular degeneration (AMD). The central component of complement, C3, is expressed in abundance by macrophages in the outer retina, and its ablation suppresses photoreceptor death in experimental photo-oxidative damage. Whether this also influences macrophage reactivity in this model system, however, is unknown. We investigate the effect of C3 ablation on macrophage activity and phagocytosis by outer retinal macrophages during photo-oxidative damage. Methods: Age-matched C3 knockout (KO) mice and wild-type (WT) C57/Bl6 mice were subjected to photo-oxidative damage. Measurements of the outer nuclear layer (ONL) thickness and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were used to assess pathology and photoreceptor apoptosis, respectively. Macrophage abundance and phagocytosis were assessed with immunolabeling for pan-macrophage and phagocytic markers, in conjunction with TUNEL staining in cohorts of C3 KO and WT mice. Results: The C3 KO mice exhibited protection against photoreceptor cell death following photo-oxidative damage, which was associated with a reduction in immunoreactivity for the stress-related factor GFAP. In conjunction, there was a reduction in IBA1-positive macrophages in the outer retina compared to the WT mice and a decrease in the number of CD68-positive cells in the outer nuclear layer and the subretinal space. In addition, the engulfment of TUNEL-positive and -negative photoreceptors by macrophages was significantly lower in the C3 KO mice cohort following photo-oxidative damage compared to the WT cohort. Conclusions: The results show that the absence of C3 mitigates the phagocytosis of photoreceptors by macrophages in the outer retina, and the net impact of C3 depletion is neuroprotective in the context of photo-oxidative damage. These data improve our understanding of the impact of C3 inhibition in subretinal inflammation and inform the development of treatments for targeting complement activation in diseases such as AMD.
Assuntos
Complemento C3/genética , Macrófagos/metabolismo , Estresse Oxidativo/efeitos da radiação , Fagocitose/genética , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Animais , Apoptose/genética , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Luz , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Retina/efeitos da radiação , Degeneração Retiniana/patologiaRESUMO
BACKGROUND: The role of the alternative complement pathway and its mediation by retinal microglia and macrophages, is well-established in the pathogenesis of Age-Related Macular Degeneration (AMD). However, the contribution of the classical complement pathway towards the progression of retinal degenerations is not fully understood, including the role of complement component 1q (C1q) as a critical activator molecule of the classical pathway. Here, we investigated the contribution of C1q to progressive photoreceptor loss and neuroinflammation in retinal degenerations. METHODS: Wild-type (WT), C1qa knockout (C1qa-/-) and mice treated with a C1q inhibitor (ANX-M1; Annexon Biosciences), were exposed to photo-oxidative damage (PD) and were observed for progressive lesion development. Retinal function was assessed by electroretinography, followed by histological analyses to assess photoreceptor degeneration. Retinal inflammation was investigated through complement activation, macrophage recruitment and inflammasome expression using western blotting, qPCR and immunofluorescence. C1q was localised in human AMD donor retinas using immunohistochemistry. RESULTS: PD mice had increased levels of C1qa which correlated with increasing photoreceptor cell death and macrophage recruitment. C1qa-/- mice did not show any differences in photoreceptor loss or inflammation at 7 days compared to WT, however at 14 days after the onset of damage, C1qa-/- retinas displayed less photoreceptor cell death, reduced microglia/macrophage recruitment to the photoreceptor lesion, and higher visual function. C1qa-/- mice displayed reduced inflammasome and IL-1ß expression in microglia and macrophages in the degenerating retina. Retinal neutralisation of C1q, using an intravitreally-delivered anti-C1q antibody, reduced the progression of retinal degeneration following PD, while systemic delivery had no effect. Finally, retinal C1q was found to be expressed by subretinal microglia/macrophages located in the outer retina of early AMD donor eyes, and in mouse PD retinas. CONCLUSIONS: Our data implicate subretinal macrophages, C1q and the classical pathway in progressive retinal degeneration. We demonstrate a role of local C1q produced by microglia/macrophages as an instigator of inflammasome activation and inflammation. Crucially, we have shown that retinal C1q neutralisation during disease progression may slow retinal atrophy, providing a novel strategy for the treatment of complement-mediated retinal degenerations including AMD.
Assuntos
Complemento C1q/biossíntese , Macrófagos/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Animais , Progressão da Doença , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Müller cells, the supporting cells of the retina, play a key role in responding to retinal stress by releasing chemokines, including CCL2, to recruit microglia and macrophages (MG/MΦ) into the damaged retina. Photobiomodulation (PBM) with 670 nm light has been shown to reduce inflammation in models of retinal degeneration. In this study, we aimed to investigate whether 670 nm light had an effect on Müller cell-initiated inflammation under retinal photo-oxidative damage (PD) in vivo and in vitro. Sprague-Dawley rats were pre-treated with 670 nm light (9J/cm2) once daily over 5 days prior to PD. The expression of inflammatory genes including CCL2 and IL-1ß was analysed in retinas. In vitro, primary Müller cells dissociated from neonatal rat retinas were co-cultured with 661W photoreceptor cells. Co-cultures were exposed to PD, followed by 670 nm light treatment to the Müller cells only, and Müller cell stress and inflammation were assessed. Primary MG/MΦ were incubated with supernatant from the co-cultures, and collected for analysis of inflammatory activation. To further understand the mechanism of 670 nm light, the expression of COX5a and mitochondrial membrane potential (ΔΨm) were measured in Müller cells. Following PD, 670 nm light-treated Müller cells had a reduced inflammatory activation, with lower levels of CCL2, IL-1ß and IL-6. Supernatant from 670 nm light-treated co-cultures reduced activation of primary MG/MΦ, and lowered the expression of pro-inflammatory cytokines, compared to untreated PD controls. Additionally, 670 nm light-treated Müller cells had an increased expression of COX5a and an elevated ΔΨm following PD, suggesting that retrograde signaling plays a role in the effects of 670 nm light on Müller cell gene expression. Our data indicates that 670 nm light reduces Müller cell-mediated retinal inflammation, and offers a potential cellular mechanism for 670 nm light therapy in regulating inflammation associated with retinal degenerations.
Assuntos
Células Ependimogliais/efeitos da radiação , Macrófagos/efeitos da radiação , Microglia/efeitos da radiação , Degeneração Retiniana/radioterapia , Animais , Quimiocinas/metabolismo , Grupo dos Citocromos c/metabolismo , Modelos Animais de Doenças , Células Ependimogliais/fisiologia , Interleucinas/metabolismo , Potencial da Membrana Mitocondrial/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Ratos , Ratos Sprague-Dawley , Degeneração Retiniana/metabolismoRESUMO
Purpose: Complement system dysregulation is strongly linked to the progression of age-related macular degeneration (AMD). Deposition of complement including C3 within the lesions in atrophic AMD is thought to contribute to lesion growth, although the contribution of local cellular sources remains unclear. We investigated the role of retinal microglia and macrophages in complement activation within atrophic lesions, in AMD and in models of focal retinal degeneration. Methods: Human AMD donor retinas were labeled for C3 expression via in situ hybridization. Rats were subject to photo-oxidative damage, and lesion expansion was tracked over a 2-month period using optical coherence tomography (OCT). Three strategies were used to determine the contribution of local and systemic C3 in mice: total C3 genetic ablation, local C3 inhibition using intravitreally injected small interfering RNA (siRNA), and depletion of serum C3 using cobra venom factor. Results: Retinal C3 was expressed by microglia/macrophages located in the outer retina in AMD eyes. In rodent photo-oxidative damage, C3-expressing microglia/macrophages and complement activation were located in regions of lesion expansion in the outer retina over 2 months. Total genetic ablation of C3 ameliorated degeneration and complement activation in retinas following damage, although systemic depletion of serum complement had no effect. In contrast, local suppression of C3 expression using siRNA inhibited complement activation and deposition, and reduced cell death. Conclusions: These findings implicate C3, produced locally by retinal microglia/macrophages, as contributing causally to retinal degeneration. Consequently, this suggests that C3-targeted gene therapy may prove valuable in slowing the progression of AMD.
Assuntos
Ativação do Complemento/fisiologia , Complemento C3/genética , Regulação da Expressão Gênica , Macrófagos/metabolismo , RNA/genética , Retina/metabolismo , Degeneração Retiniana/genética , Animais , Animais Recém-Nascidos , Complemento C3/biossíntese , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Hibridização In Situ , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Retina/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Tomografia de Coerência ÓpticaRESUMO
Light-induced degeneration in rodent retinas is an established model for of retinal degeneration, including the roles of oxidative stress and neuroinflammatory activity. In these models, photoreceptor death is elicited via photo-oxidative stress, and is exacerbated by recruitment of subretinal macrophages and activation of immune pathways including complement propagation. Existing light damage models have relied heavily on albino rodents, and mostly using acute light stimuli. These albino models have proven valuable in uncovering the pathogenic mechanisms of such pathways in the context of retinal disease. However, their inherent albinism hinders comparability to normal retinal physiology, and also makes gene technology analysis time-consuming due to the predominance of the pigmented mouse strains in these applications. In this study, we characterise a new light damage model utilising C57BL/6J mice over a 7 day period of chronic light exposure. We use high-efficiency LED technology to deliver a sustained intensity of 100 k lux with negligible modulation of ambient temperature. We show that in the C57BL/6J mouse, chronic light exposure elicits the cardinal features of light damage including photoreceptor degeneration, atrophy of the choriocapillaris, decreased retinal function and increases in oxidative stress markers 4-HNE and 8-OHG, which emerge progressively over the 7 day period of exposure. These changes are accompanied by robust recruitment of IBA1+ and F4/80 + microglia/macrophages to the ONL and subretinal space, followed the strong up-regulation of monocyte-chemoattractants Ccl2, Ccl3, and Ccl12, as well as increases in expression of complement component C3. These findings are in agreement with prior damage models conducted in albino rodents such as Balb/c mice, and support the use of this new model in further investigating the causative features of oxidative stress and inflammation in retinal disease.
Assuntos
Luz/efeitos adversos , Estresse Oxidativo/fisiologia , Degeneração Retiniana , Análise de Variância , Animais , Biomarcadores/metabolismo , Morte Celular/efeitos da radiação , Modelos Animais de Doenças , Eletrorretinografia , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Inflamação/fisiopatologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Fotorreceptoras de Vertebrados/patologia , Retina/efeitos da radiação , Degeneração Retiniana/patologia , Degeneração Retiniana/fisiopatologiaRESUMO
BACKGROUND: The recruitment of macrophages accompanies almost every pathogenic state of the retina, and their excessive activation in the subretinal space is thought to contribute to the progression of diseases including age-related macular degeneration. Previously, we have shown that macrophages aggregate in the outer retina following damage elicited by photo-oxidative stress, and that inhibition of their recruitment reduces photoreceptor death. Here, we look for functional insight into macrophage activity in this model through the spatiotemporal interplay of macrophage polarisation over the course of degeneration. METHODS: Rats were exposed to 1000 lux light damage (LD) for 24 hrs, with some left to recover for 3 and 7 days post-exposure. Expression and localisation of M1- and M2- macrophage markers was investigated in light-damaged retinas using qPCR, ELISA, flow cytometry, and immunohistochemistry. RESULTS: Expression of M1- (Ccl3, Il-6, Il-12, Il-1ß, TNFα) and M2- (CD206, Arg1, Igf1, Lyve1, Clec7a) related markers followed discrete profiles following light damage; up-regulation of M1 genes peaked at the early phase of cell death, while M2 genes generally exhibited more prolonged increases during the chronic phase. Moreover, Il-1ß and CD206 labelled accumulations of microglia/macrophages which differed in their morphological, temporal, and spatial characteristics following light damage. CONCLUSIONS: The data illustrate a dynamic shift in macrophage polarisation following light damage through a broad swathe of M1 and M2 markers. Pro-inflammatory M1 activation appears to dominate the early phase of degeneration while M2 responses appear to more heavily mark the chronic post-exposure period. While M1/M2 polarisation represents two extremes amongst a spectrum of macrophage activity, knowledge of their predominance offers insight into functional consequences of macrophage activity over the course of damage, which may inform the spatiotemporal employment of therapeutics in retinal disease.