Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Int J Nanomedicine ; 19: 3233-3257, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601346

RESUMO

Extracellular vesicles (EVs) can deliver various bioactive molecules among cells, making them promising diagnostic and therapeutic alternatives in diseases. Mesenchymal stem cell-derived EVs (MSC-EVs) have shown therapeutic potential similar to MSCs but with drawbacks such as lower yield, reduced biological activities, off-target effects, and shorter half-lives. Improving strategies utilizing biotechniques to pretreat MSCs and enhance the properties of released EVs, as well as modifying MSC-EVs to enhance targeting abilities and achieve controlled release, shows potential for overcoming application limitations and enhancing therapeutic effects in treating bone-related diseases. This review focuses on recent advances in functionalizing MSC-EVs to treat bone-related diseases. Firstly, we underscore the significance of MSC-EVs in facilitating crosstalk between cells within the skeletal environment. Secondly, we highlight strategies of functional-modified EVs for treating bone-related diseases. We explore the pretreatment of stem cells using various biotechniques to enhance the properties of resulting EVs, as well as diverse approaches to modify MSC-EVs for targeted delivery and controlled release. Finally, we address the challenges and opportunities for further research on MSC-EVs in bone-related diseases.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Preparações de Ação Retardada , Comunicação Celular , Transdução de Sinais
2.
Math Biosci Eng ; 20(10): 18368-18385, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-38052562

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a malignant tumor of the digestive system in the esophageal squamous epithelium. Many studies have linked esophageal cancer (EC) to the imbalance of oral microecology. In this work, different machine learning (ML) models including Random Forest (RF), Gaussian mixture model (GMM), K-nearest neighbor (KNN), logistic regression (LR), support vector machine (SVM) and extreme gradient boosting (XGBoost) based on Genetic Algorithm (GA) optimization was developed to predict the relationship between salivary flora and ESCC by combining the relative abundance data of Bacteroides, Firmicutes, Proteobacteria, Fusobacteria and Actinobacteria in the saliva of patients with ESCC and healthy control. The results showed that the XGBoost model without parameter optimization performed best on the entire dataset for ESCC diagnosis by cross-validation (Accuracy = 73.50%). Accuracy and the other evaluation indicators, including Precision, Recall, F1-score and the area under curve (AUC) of the receiver operating characteristic (ROC), revealed XGBoost optimized by the GA (GA-XGBoost) achieved the best outcome on the testing set (Accuracy = 89.88%, Precision = 89.43%, Recall = 90.75%, F1-score = 90.09%, AUC = 0.97). The predictive ability of GA-XGBoost was validated in phylum-level salivary microbiota data from ESCC patients and controls in an external cohort. The results obtained in this validation (Accuracy = 70.60%, Precision = 46.00%, Recall = 90.55%, F1-score = 61.01%) illustrate the reliability of the predictive performance of the model. The feature importance rankings obtained by XGBoost indicate that Bacteroides and Actinobacteria are the two most important factors in predicting ESCC. Based on these results, GA-XGBoost can predict and diagnose ESCC according to the relative abundance of salivary flora, providing an effective tool for the non-invasive prediction of esophageal malignancies.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Neoplasias Esofágicas/diagnóstico , Reprodutibilidade dos Testes , Área Sob a Curva , Análise por Conglomerados
3.
Genet Res (Camb) ; 2023: 5513812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780815

RESUMO

Papillary thyroid carcinoma (PTC) is the most common type of thyroid neoplasms, characterized by evidence of follicular cell differentiation. Orthodenticle homeobox 1 (OTX1) is a transcription factor which has been implicated in numerous diseases, including malignancies. The objective of this research was to explore the function of OTX1 in PTC. Immunohistochemistry (IHC) was employed to determine the protein level of OTX1 in PTC specimens. Cell viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, a xenograft model on nude mice was established to investigate in vivo effects of OTX1. Our results revealed that OTX1 was significantly upregulated within specific PTC tissues and was remarkably correlated with unfavorable clinical outcomes in PTC. Silencing OTX1 resulted in a significant inhibition in cell viability and suppressed cell proliferation. In addition, in vivo experiments demonstrated that OTX1 silencing resulted in a significant suppression of tumor growth in nude mice. Collectively, these results suggest that OTX1 may play crucial roles in promoting PTC progression.


Assuntos
MicroRNAs , Neoplasias da Glândula Tireoide , Animais , Camundongos , Humanos , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/patologia , MicroRNAs/metabolismo , Camundongos Nus , Genes Homeobox , Prognóstico , Movimento Celular , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Biomarcadores , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo
4.
Adv Sci (Weinh) ; 10(26): e2301763, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37395388

RESUMO

Osteoarthritis is a degenerative disease characterized by abnormal neurovascularization at the osteochondral junctions, the regulatory mechanisms of which remain poorly understood. In the present study, a murine osteoarthritic model with augmented neurovascularization at the osteochondral junction is used to examine this under-evaluated facet of degenerative joint dysfunction. Increased extracellular RNA (exRNA) content is identified in neurovascularized osteoarthritic joints. It is found that the amount of exRNA is positively correlated with the extent of neurovascularization and the expression of vascular endothelial growth factor (VEGF). In vitro binding assay and molecular docking demonstrate that synthetic RNAs bind to VEGF via electrostatic interactions. The RNA-VEGF complex promotes the migration and function of endothelial progenitor cells and trigeminal ganglion cells. The use of VEGF and VEGFR2 inhibitors significantly inhibits the amplification of the RNA-VEGF complex. Disruption of the RNA-VEGF complex by RNase and polyethyleneimine reduces its in vitro activities, as well as prevents excessive neurovascularization and osteochondral deterioration in vivo. The results of the present study suggest that exRNAs may be potential targets for regulating nerve and blood vessel ingrowth under physiological and pathological joint conditions.


Assuntos
Osteoartrite , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Simulação de Acoplamento Molecular , Osteoartrite/metabolismo , RNA/genética
5.
Inflammation ; 46(6): 2225-2240, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37458919

RESUMO

Heterotopic ossification (HO) severely affects people's lives; however, its pathological mechanism remains poorly understood. Although extracellular DNA (ecDNA) has been shown to play important roles in pathological calcification, its effects in HO development and progression remain unknown. The in vivo rat Achilles tendon injury model and in vitro collagen I calcification model were used to evaluate the effects of ecDNA in the ectopic calcifications and the main cell types involved in those pathological process. Histology, immunofluorescent staining, reverse transcriptase-polymerase chain reaction analysis and micro-computed tomography were used to identify the distribution of macrophage-derived ecDNA and elucidate their roles in HO. The results showed that the amount of ecDNA and ectopic calcification increased significantly and exhibited a strong correlation in the injured tendons of HO model compared with those of the controls, which was accompanied by a significantly increased number of M2 macrophages in the injured tendon. During in vitro co-culture experiments, M2 macrophages calcified the reconstituted type I collagen and ectopic bone collected from the injured tendons of HO rats, while those effects were inhibited by deoxyribonuclease. More importantly, deoxyribonuclease reversed the pathological calcification in the injured rat tendon HO model. The present study showed that ecDNA from M2 macrophages initiates pathological calcification in HO, and the elimination of ecDNA might be developed into a clinical strategy to prevent ectopic mineralization diseases. The use of deoxyribonuclease for the targeted degradation of ecDNA at affected tissue sites provides a potential solution to treat diseases associated with ectopic mineralization.


Assuntos
Ossificação Heterotópica , Humanos , Ratos , Animais , Microtomografia por Raio-X , Ossificação Heterotópica/metabolismo , Ossificação Heterotópica/patologia , Tendões , Macrófagos/metabolismo , Desoxirribonucleases/farmacologia , Osteogênese
6.
Am J Pathol ; 193(9): 1208-1222, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37328100

RESUMO

Oral submucous fibrosis (OSF) is a potentially malignant disorder of the oral mucosa; however, whether and how the fibrotic matrix of OSF is involved in the malignant transformation of epithelial cells remains unknown. Herein, oral mucosa tissue from patients with OSF, OSF rat models, and their controls were used to observe the extracellular matrix changes and epithelial-mesenchymal transformation (EMT) in fibrotic lesions. Compared with controls, oral mucous tissues from patients with OSF showed an increased number of myofibroblasts, a decreased number of blood vessels, and increased type I and type III collagen levels. In addition, the oral mucous tissues from humans and OSF rats showed increased stiffness, accompanied by increased EMT activities of epithelial cells. The EMT activities of stiff construct-cultured epithelial cells were increased significantly by exogenous piezo-type mechanosensitive ion channel component 1 (Piezo1) activation, and decreased by yes-associated protein (YAP) inhibition. During ex vivo implantation, oral mucosal epithelial cells of the stiff group showed increased EMT activities and increased levels of Piezo1 and YAP compared with those in the sham and soft groups. These results indicate that increased stiffness of the fibrotic matrix in OSF led to increased proliferation and EMT of mucosal epithelial cells, in which the Piezo1-YAP signal transduction is important.


Assuntos
Fibrose Oral Submucosa , Humanos , Ratos , Animais , Fibrose Oral Submucosa/metabolismo , Fibrose Oral Submucosa/patologia , Mucosa Bucal/metabolismo , Mucosa Bucal/patologia , Transição Epitelial-Mesenquimal , Miofibroblastos/metabolismo , Células Epiteliais/metabolismo
7.
NPJ Precis Oncol ; 7(1): 51, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258600

RESUMO

Homologous recombination deficiency (HRD) testing has been approved by FDA for selecting epithelial ovarian cancer (EOC) patients who may benefit from the first-line poly (ADP-ribose) polymerase inhibitor (PARPi) maintenance therapy. However, the effects of HRD on the clinical outcomes of first-line chemotherapy and first-line PARPi maintenance therapy have not been rigorously evaluated in Chinese EOC patients. Here, we developed an HRD assay and applied it to two large retrospectively collected Chinese EOC patient cohorts. In the first-line adjuvant chemotherapy cohort (FACT, N = 380), HRD status significantly improved PFS (median, 15.6 months vs. 9.4 months; HR, 0.688; 95% CI, 0.526-0.899; P = 0.003) and OS (median, 89.5 months vs. 60.9 months; HR, 0.636; 95% CI, 0.423-0.955; P = 0.008). In the first-line PARPi maintenance therapy cohort (FPMT, N = 83), HRD status significantly improved PFS (median, NA vs. 12 months; HR, 0.438; 95% CI, 0.201-0.957; P = 0.033) and OS (median, NA vs. NA months; HR, 0.12; 95% CI, 0.029-0.505; P = 0.001). Our results demonstrate that HRD status is a significant predictor for PFS and OS in both first-line chemotherapy and first-line PARPi maintenance therapy, providing strong real-world evidence for conducting genetic testing and improving clinical recommendations for Chinese EOC patients.

8.
Front Bioeng Biotechnol ; 11: 1138601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36949886

RESUMO

Introduction: Sensory nerves and vessels are critical for skeletal development and regeneration, but crosstalk between neurovascular network and mineralization are not clear. The aim of this study was to explore neurovascular changes and identify bioactive regulators during in situ osteogenesis. Method: In situ osteogenesis model was performed in male rats following Achilles tenotomy. At 3, 6 and 9 weeks after surgery, mineralization, blood vessels, sensory innervation, and bioactive regulators expression were evaluated via micro-computed tomography, immunofluorescent staining, histology and reverse transcriptase-polymerase chain reaction analyses. Result: In the process of in situ osteogenesis, the mineral density increased with time, and the locations of minerals, nerves and blood vessels were highly correlated at each time point. The highest density of sensory nerve was observed in the experimental group at the 3rd week, and then gradually decreased with time, but still higher than that in the sham control group. Among many regulatory factors, semaphorin 3A (Sema3A) was highly expressed in experimental model and its expression was temporally sequential and spatially correlated sensory nerve. Conclusion: The present study showes that during in situ osteogenesis, innervation and angiogenesis are highly correlated, and Sema3A is associated with the position and expression of the sensory nerve.

9.
Am J Med Genet A ; 191(5): 1418-1424, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36794641

RESUMO

CHD7 disorder is a multiple congenital anomaly syndrome with a highly variable phenotypic spectrum, and includes CHARGE syndrome. Internal and external genital phenotypes frequently seen in CHD7 disorder include cryptorchidism and micropenis in males, and vaginal hypoplasia in females, both thought to be secondary to hypogonadotropic hypogonadism. Here, we report 14 deeply phenotyped individuals with known CHD7 variants (9 pathogenic/likely pathogenic and 5 VOUS) and a range of reproductive and endocrine phenotypes. Reproductive organ anomalies were observed in 8 of 14 individuals and were more commonly noted in males (7/7), most of whom presented with micropenis and/or cryptorchidism. Kallmann syndrome was commonly observed among adolescents and adults with CHD7 variants. Remarkably, one 46,XY individual presented with ambiguous genitalia, cryptorchidism with Müllerian structures including uterus, vagina and fallopian tubes, and one 46,XX female patient presented with absent vagina, uterus and ovaries. These cases expand the genital and reproductive phenotype of CHD7 disorder to include two individuals with genital/gonadal atypia (ambiguous genitalia), and one with Müllerian aplasia.


Assuntos
Síndrome CHARGE , Criptorquidismo , Transtornos do Desenvolvimento Sexual , Humanos , Masculino , Feminino , Fenótipo , Síndrome CHARGE/genética , Transtornos do Desenvolvimento Sexual/genética , Genitália , DNA Helicases/genética , Proteínas de Ligação a DNA/genética
10.
Acta Biomater ; 157: 639-654, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36509401

RESUMO

Oral submucous fibrosis (OSF) is a chronic, inflammatory and potentially malignant oral disorder. Its pathophysiology is extremely complex, including excessive collagen deposition, massive inflammatory infiltration, and capillary atrophy. However, the existing clinical treatment methods do not fully take into account all the pathophysiological processes of OSF, so they are generally low effective and have many side effects. In the present study, we developed an injectable sodium hyaluronate/45S5 bioglass composite hydrogel (BG/HA), which significantly relieved mucosal pallor and restricted mouth opening in OSF rats without any obvious side effects. The core mechanism of BG/HA in the treatment of OSF is the release of biologically active silicate ions, which inhibit collagen deposition and inflammation, and promote angiogenesis and epithelial regeneration. Most interestingly, silicate ions can overall regulate the physiological environment of OSF by down-regulating α-smooth muscle actin (α-SMA) and CD68 and up-regulating CD31 expression, as well as regulating the expression of pro-fibrotic factors [transforming growth factor-ß1 (TGF-ß1), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α) and tissue inhibitors of metalloproteinase-1 (TIMP-1)] and anti-fibrotic factors [interleukin-1ß (IL-1ß)] in macrophage. In conclusion, our study shows that BG/HA has great potential in the clinical treatment of OSF, which provides an important theoretical basis for the subsequent development of new anti-fibrotic clinical preparations. STATEMENT OF SIGNIFICANCE: : Oral submucous fibrosis (OSF) is a chronic, inflammatory and potentially malignant mucosal disease with significant impact on the quality of patients' life. However, the existing clinical treatments have limited efficacy and many side effects. There is an urgent need for development of specific drugs for OSF treatment. In the present study, bioglass (BG) composited with sodium hyaluronate solution (HA) was used to treat OSF in an arecoline-induced rat model. BG/HA can significantly inhibit collagen deposition, regulate inflammatory response, promote angiogenesis and repair damaged mucosal epithelial cells, and thereby mitigate the development of fibrosis in vivo.


Assuntos
Fibrose Oral Submucosa , Ratos , Animais , Fibrose Oral Submucosa/tratamento farmacológico , Fibrose Oral Submucosa/induzido quimicamente , Fibrose Oral Submucosa/metabolismo , Mucosa Bucal , Ácido Hialurônico/farmacologia , Ácido Hialurônico/metabolismo , Hidrogéis/metabolismo , Colágeno/farmacologia , Colágeno/metabolismo
11.
J Am Dent Assoc ; 153(12): 1134-1144.e2, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36307356

RESUMO

BACKGROUND: The association between clinicopathologic characteristics and the relapse of fibrous gingival hyperplasia is unknown. METHODS: The records of 211 consecutive patients with a clinicopathologic diagnosis of fibrous gingival hyperplasia were retrieved. Patients who experienced relapse after surgical excision of the lesion were considered case patients (n = 30). All control patients were informed that there was no recurrence (n = 181). Logistic regression was used to evaluate the associations among different characteristics and the recurrence. Stratified analyses on sex was applied to identify the different associations. RESULTS: Binary logistic regression showed that patients with ulcer (odds ratio [OR], 3.23; 95% CI, 1.18 to 8.83) or mechanical stimulation (OR, 2.42; 95% CI, 1.03 to 5.68) had a higher risk of experiencing recurrence. Stratified analysis of sex identified significant association in females (ulcer: OR, 4.04; 95% CI, 1.14 to 14.34; mechanical stimulation: OR, 3.30; 95% CI, 1.15 to 9.42). No significant difference was observed in males (ulcer: OR, 2.44; 95% CI, 0.40 to 15.06; mechanical stimulation: OR, 1.62; 95% CI, 0.28 to 9.40). Male patients with larger epulides had fewer recurrence (OR, 0.13; 95% CI, 0.02 to 0.74). There was no significant difference in pathologic calcification between case and control patients (P > .05). CONCLUSIONS: Patients with ulcer and mechanical stimulation may have a high risk of experiencing recurrent epulis. PRACTICAL IMPLICATIONS: More attention should be paid to patients with ulcer and mechanical stimulation. Apart from complete surgical removal, it is important to remove local stimulation to prevent recurrence of these lesions.


Assuntos
Calcinose , Doenças da Gengiva , Hiperplasia Gengival , Feminino , Humanos , Masculino , Hiperplasia Gengival/cirurgia , Hiperplasia Gengival/patologia , Úlcera , Doenças da Gengiva/cirurgia , Recidiva , Doença Crônica
12.
J Biochem Mol Toxicol ; 36(12): e23218, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36098178

RESUMO

Long noncoding RNA forkhead box D3-antisense RNA 1 (FOXD3-AS1) is associated with cardiovascular diseases, but its roles in myocardial ischemia/reperfusion (I/R) injury and the related signaling pathway have not been fully reported. We aimed to investigate the roles and mechanism of action of FOXD3-AS1 in myocardial I/R injury. An in vivo myocardial I/R injury mouse model and an in vitro hypoxia/reoxygenation (H/R) cardiomyocyte model was established. Quantitative reverse transcription-polymerase chain reaction, western blotting, and immunofluorescent assays were performed to examine the expression levels of FOXD3-AS1, microRNA (miR)-128, thioredoxin-interacting protein/regulation of development and DNA damage response 1/protein kinase B/glycogen synthase kinase 3ß/nuclear factor erythroid 2-related factor 2 (TXNIP/Redd1/AKT/GSK3ß/Nrf2) pathway-related proteins and apoptosis-related proteins. The interactions between FOXD3-AS1 and miR-128 and miR-128 and TXNIP were analyzed by Spearman's correlation test, predicted by ENCORI, and verified by dual-luciferase reporter assay. In addition, the levels of cardiac injury markers and oxidative stress markers were evaluated by corresponding kits. Cell Counting Kit-8 assays and flow cytometry were performed to assess cell viability and apoptosis. Hematoxylin and eosin staining was applied to observe the effect of FOXD3-AS1 on the morphology of myocardial I/R injured tissues. The results showed that the FOXD3-AS1 and TXNIP were highly expressed, whereas miR-128 was expressed at low levels in I/R myocardial tissues and H/R-induced H9c2 cells. FOXD3-AS1 directly targeted miR-128 to reduce its expression. TXNIP was confirmed as a downstream target of miR-128. Knockdown of FOXD3-AS1 led to the alleviation of I/R injury in vivo and in vitro. FOXD3-AS1 enhanced the expression of TXNIP by sponging miR-128, which inhibited the Redd1/AKT/GSK3ß/Nrf2 pathway. Both inhibition of miR-128 and overexpression of TXNIP reversed the cardioprotective effect of FOXD3-AS1 small interfering RNA in H/R-induced H9c2 cells.


Assuntos
MicroRNAs , Traumatismo por Reperfusão Miocárdica , RNA Longo não Codificante , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , RNA Antissenso , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Apoptose/genética , Miócitos Cardíacos/metabolismo , Proteínas de Transporte/metabolismo , Tiorredoxinas
13.
J Cell Sci ; 135(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35946425

RESUMO

Mitral and tricuspid valves are essential for unidirectional blood flow in the heart. They are derived from similar cell sources, and yet congenital dysplasia affecting both valves is clinically rare, suggesting the presence of differential regulatory mechanisms underlying their development. Here, we specifically inactivated Dicer1 in the endocardium during cardiogenesis and found that Dicer1 deletion caused congenital mitral valve stenosis and regurgitation, whereas it had no impact on other valves. We showed that hyperplastic mitral valves were caused by abnormal condensation and extracellular matrix (ECM) remodeling. Our single-cell RNA sequencing analysis revealed impaired maturation of mesenchymal cells and abnormal expression of ECM genes in mutant mitral valves. Furthermore, expression of a set of miRNAs that target ECM genes was significantly lower in tricuspid valves compared to mitral valves, consistent with the idea that the miRNAs are differentially required for mitral and tricuspid valve development. We thus reveal miRNA-mediated gene regulation as a novel molecular mechanism that differentially regulates mitral and tricuspid valve development, thereby enhancing our understanding of the non-association of inborn mitral and tricuspid dysplasia observed clinically.


Assuntos
MicroRNAs , Valva Tricúspide , Matriz Extracelular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Valva Mitral , Valva Tricúspide/anormalidades
14.
JCI Insight ; 7(11)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35674133

RESUMO

Epileptic seizures are common sequelae of stroke, acute brain injury, and chronic neurodegenerative diseases, including Alzheimer's disease (AD), and cannot be effectively controlled in approximately 40% of patients, necessitating the development of novel therapeutic agents. Activation of the A1 receptor (A1R) by endogenous adenosine is an intrinsic mechanism to self-terminate seizures and protect neurons from excitotoxicity. However, targeting A1R for neurological disorders has been hindered by side effects associated with its broad expression outside the nervous system. Here we aim to target the neural-specific A1R/neurabin/regulator of G protein signaling 4 (A1R/neurabin/RGS4) complex that dictates A1R signaling strength and response outcome in the brain. We developed a peptide that blocks the A1R-neurabin interaction to enhance A1R activity. Intracerebroventricular or i.n. administration of this peptide shows marked protection against kainate-induced seizures and neuronal death. Furthermore, in an AD mouse model with spontaneous seizures, nasal delivery of this blocking peptide reduces epileptic spike frequency. Significantly, the anticonvulsant and neuroprotective effects of this peptide are achieved through enhanced A1R function in response to endogenous adenosine in the brain, thus, avoiding side effects associated with A1R activation in peripheral tissues and organs. Our study informs potentially new anti-seizure therapy applicable to epilepsy and other neurological illness with comorbid seizures.


Assuntos
Doença de Alzheimer , Epilepsia , Proteínas RGS , Adenosina , Doença de Alzheimer/tratamento farmacológico , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Humanos , Camundongos , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso , Proteínas RGS/metabolismo , Receptor A1 de Adenosina/metabolismo
15.
Front Bioeng Biotechnol ; 10: 901749, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573252

RESUMO

Introduction: Degradation of the condylar cartilage during temporomandibular joint osteoarthritis (TMJ-OA) results in the infiltration of nerves, blood vessels and inflammatory cells from the subchondral bone into the cartilage. The interaction among innervation, angiogenesis and inflammation in the condylar cartilage of TMJ-OA remains largely unknown. Method: In the present study, microarray-based transcriptome analysis was used to detect, and quantitative real-time polymerase chain reaction was used to validate transcriptome changes in the condylar cartilage from a well-established rat TMJ-OA model. Gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) pathway and protein-protein interaction (PPI) analyses were conducted. Result: There were 1817 differentially expressed genes (DEGs, fold change ≥2, p < 0.05) between TMJ-OA and control cartilages, with 553 up-regulated and 1,264 down-regulated genes. Among those genes, representative DEGs with known/suspected roles in innervation, angiogenesis and inflammation were further validated by enriched GO terms and KEGG pathways. The DEGs related to innervation were predominately enriched in the GO terms of neurogenesis, generation of neurons, and KEGG pathways of cholinergic synapse and neurotrophin signaling. Genes related to angiogenesis were enriched in GO terms of vasculature and blood vessel development, and KEGG pathways of hypoxia-inducible factor 1 (HIF-1) pathway and calcium signaling pathway. For inflammation, the DEGs were enriched in the GO terms of immune system process and immune response, and KEGG pathways of Toll-like receptor and transforming growth factor ß (TGFß) signaling. Analysis with PPI indicated that the aforementioned DEGs were highly-interacted. Several hub genes such as v-akt murine thymoma viral oncogene homolog 1 (Akt1), glycogen synthase kinase 3ß (Gsk3b), fibroblast growth factor 2 (Fgf2) and nerve growth factor receptor (Ngfr) were validated. Conclusion: The present study demonstrated, for the first time, that intimate interactions exist among innervation, angiogenesis and inflammation in the condylar cartilage of TMJ-OA.

16.
Nat Commun ; 13(1): 2792, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589707

RESUMO

Human tubulin beta class IVa (TUBB4A) is a member of the ß-tubulin family. In most normal tissues, expression of TUBB4A is little to none, but it is highly expressed in human prostate cancer. Here we show that high expression levels of TUBB4A are associated with aggressive prostate cancers and poor patient survival, especially for African-American men. Additionally, in prostate cancer cells, TUBB4A knockout (KO) reduces cell growth and migration but induces DNA damage through increased γH2AX and 53BP1. Furthermore, during constricted cell migration, TUBB4A interacts with MYH9 to protect the nucleus, but either TUBB4A KO or MYH9 knockdown leads to severe DNA damage and reduces the NF-κB signaling response. Also, TUBB4A KO retards tumor growth and metastasis. Functional analysis reveals that TUBB4A/GSK3ß binds to the N-terminal of MYH9, and that TUBB4A KO reduces MYH9-mediated GSK3ß ubiquitination and degradation, leading to decreased activation of ß-catenin signaling and its relevant epithelial-mesenchymal transition. Likewise, prostate-specific deletion of Tubb4a reduces spontaneous tumor growth and metastasis via inhibition of NF-κB, cyclin D1, and c-MYC signaling activation. Our results suggest an oncogenic role of TUBB4A and provide a potentially actionable therapeutic target for prostate cancers with TUBB4A overexpression.


Assuntos
Neoplasias da Próstata , beta Catenina , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Masculino , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , NF-kappa B/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Tubulina (Proteína)/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
17.
Bioact Mater ; 15: 68-81, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35386354

RESUMO

Post-extraction bleeding and alveolar bone resorption are the two frequently encountered complications after tooth extraction that result in poor healing and rehabilitation difficulties. The present study covalently bonded polyphosphate onto a collagen scaffold (P-CS) by crosslinking. The P-CS demonstrated improved hemostatic property in a healthy rat model and an anticoagulant-treated rat model. This improvement is attributed to the increase in hydrophilicity, increased thrombin generation, platelet activation and stimulation of the intrinsic coagulation pathway. In addition, the P-CS promoted the in-situ bone regeneration and alveolar ridge preservation in a rat alveolar bone defect model. The promotion is attributed to enhanced osteogenic differentiation of bone marrow stromal cells. Osteogenesis was improved by both polyphosphate and blood clots. Taken together, P-CS possesses favorable hemostasis and alveolar ridge preservation capability. It may be used as an effective treatment option for post-extraction bleeding and alveolar bone loss. Statement of significance: Collagen scaffold is commonly used for the treatment of post-extraction bleeding and alveolar bone loss after tooth extraction. However, its application is hampered by insufficient hemostatic and osteoinductive property. Crosslinking polyphosphate with collagen produces a modified collagen scaffold that possesses improved hemostatic performance and augmented bone regeneration potential.

18.
Acta Biomater ; 136: 137-146, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34571268

RESUMO

Collagen membranes crosslinked with high molecular weight polyacrylic acid (HPAA) are capable of self-mineralization via in situ intrafibrillar mineralization. These HPAA-crosslinked collagen membranes (HCM) have been shown to promote osteogenic differentiation of mesenchymal stem cells (MSCs) and enhance bone regeneration in vivo. Nevertheless, the biological triggers involved in those processes and the associated mechanisms are not known. Here, we identified the contribution of mitochondrial dynamics in HCM-mediated osteogenic differentiation of MSCs. Mitochondriogenesis markers were significantly upregulated when MSCs were cultured on HCM, committing the MSCs to osteogenic differentiation. The mitochondria fused to form an interconnected mitochondrial network in response to the high energy requirements. Mitochondrial fission in MSCs was also triggered by HCM; fission slightly declined at 14 days to restore the equilibrium in mitochondrial dynamics. Mitophagy, another event that regulates mitochondrial dynamics, occurred actively to remove dysfunctioned mitochondria and isolate damaged mitochondria from the rest of network. The mitophagy level of MSCs was significantly elevated in the presence of HCM. Taken together, the present findings indicate that upregulation of mitochondrial dynamics via mitochondriogenesis, fusion, fission and mitophagy is responsible for HCM-mediated osteogenic differentiation of MSCs. STATEMENT OF SIGNIFICANCE: High molecular weight polyacrylic acid (HPAA)-crosslinked collagen membrane (HCM) was found to promote in-situ bone regeneration because of it can stimulate osteogenic differentiation of mesenchymal stem cells (MSCs). Nevertheless, the biological triggers involved in those processes and associated mechanisms are not known. This study identifies that activation of mitochondrial dynamics is centrally involved in HCM-mediated osteogenic differentiation of MSCs. The HCM accelerates mitochondriogenesis and regulates homeostasis of the mitochondrial network in response to the increased energy demand for osteogenic differentiation. Concomitantly, mitophagy actively occurs to remove dysfunctioned mitochondria from the rest of the mitochondrial network. Identification of the involvement of mitophagy in HCM-mediated osteogenic differentiation of MSCs opens new vistas in the application of biomimetic mineralization in bone tissue regeneration.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Diferenciação Celular , Células Cultivadas , Colágeno , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial , Ratos Sprague-Dawley , Regulação para Cima
19.
Adv Sci (Weinh) ; 8(7): 2003390, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33854888

RESUMO

For the past two decades, the function of intrabony nerves on bone has been a subject of intense research, while the function of bone on intrabony nerves is still hidden in the corner. In the present review, the possible crosstalk between bone and intrabony peripheral nerves will be comprehensively analyzed. Peripheral nerves participate in bone development and repair via a host of signals generated through the secretion of neurotransmitters, neuropeptides, axon guidance factors and neurotrophins, with additional contribution from nerve-resident cells. In return, bone contributes to this microenvironmental rendezvous by housing the nerves within its internal milieu to provide mechanical support and a protective shelf. A large ensemble of chemical, mechanical, and electrical cues works in harmony with bone marrow stromal cells in the regulation of intrabony nerves. The crosstalk between bone and nerves is not limited to the physiological state, but also involved in various bone diseases including osteoporosis, osteoarthritis, heterotopic ossification, psychological stress-related bone abnormalities, and bone related tumors. This crosstalk may be harnessed in the design of tissue engineering scaffolds for repair of bone defects or be targeted for treatment of diseases related to bone and peripheral nerves.


Assuntos
Doenças Ósseas/fisiopatologia , Osso e Ossos/inervação , Fibras Nervosas/fisiologia , Nervos Periféricos/fisiologia , Transdução de Sinais/fisiologia , Humanos , Células-Tronco Mesenquimais/fisiologia
20.
Angew Chem Int Ed Engl ; 60(26): 14438-14445, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33851770

RESUMO

Direct delivery of exogenous non-coding nucleic acids into living cells has attracted intense interest in biological applications. However, the cell entry efficiency and target capture ability remain to be improved. Herein, we report a method for compartmenting the nucleic acids on the surface of poly-adenine-based spherical nucleic acids (polyA-SNAs) for efficient capture of oncogenic microRNAs (miRNAs) in living cells. We find that polyA-SNAs exhibit high cell entry efficiency, which is insensitive to the configuration of the anti-miRNA sequences. By programming the length of polyAs, we precisely engineered the spatial configuration of the anti-miRNA sequences in polyA-SNAs. Compartmentalized polyA-SNAs bind to miRNAs with improved capture ability as compared to densely compacted SNAs. We further demonstrate that polyA-SNAs serve as high-efficacy miRNA sponges for capturing oncogenic miRNAs both in living cells and in mice. The efficient inhibition of miRNAs results in significant suppression of tumor growth.


Assuntos
MicroRNAs/isolamento & purificação , Ácidos Nucleicos/química , Poli A/química , Células HEK293 , Humanos , MicroRNAs/química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA