Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2401787, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101321

RESUMO

Type I photodynamic therapy (PDT) generates reactive oxygen species (ROS) through oxygen-independent photoreactions, making it a promising method for treating hypoxic tumors. However, the superoxide anion (O2∙-) generated usually exhibits a low oxidation capacity, restricting the antitumor efficacy of PDT in clinical practice. Herein, a photoactivated self-assembled nanoreactor (1-NBS@CeO2) is designed through integration of type I PDT and cerium oxide (CeO2) nanozymes for inducing cascade-amplified oxidative stress in hypoxic tumors. The nanoreactor is constructed though co-assembly of an amphiphilic peptide (1-NBS) and CeO2, giving well-dispersed spherical nanoparticles with enhanced superoxide dismutase (SOD)-like and peroxidase (POD)-like activities. Following light irradiation, 1-NBS@CeO2 undergoes type I photoreactions to generated O2∙-, which is further catalyzed by the nanoreactors, ultimately forming hypertoxic hydroxyl radical (∙OH) through cascade-amplified reactions. The PDT treatment using 1-NBS@CeO2 results in elevation of intracellular ROS and depletion of GSH content in A375 cells, thereby inducing mitochondrial dysfunction and triggering apoptosis and ferroptosis of tumor cells. Importantly, intravenous administration of 1-NBS@CeO2 alongside light irradiation showcases enhances antitumor efficacy and satisfactory biocompatibility in vivo. Together, the self-assembled nanoreactor facilitates cascade-amplified photoreactions for achieving efficacious type I PDT, which holds great promise in developing therapeutic modules towards hypoxic tumors.

2.
Int J Biol Macromol ; 259(Pt 1): 129133, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171439

RESUMO

The wound microenvironment-responsive hydrogel, featuring a dually cross-linked architecture, offers distinct advantages in the realm of drug delivery due to its exceptional mechanical properties and responsiveness to stimuli. In this investigation, a versatile dually cross-linked hydrogel was synthesized. The initial framework was established through non-covalent interactions employing a self-assembling peptide indomethacin-Gly-Phe-Phe-Tyr-Gly-Arg-Gly-Asp (abbreviated as IDM-1), while the second framework underwent chemical cross-linking of chitosan (CS) mediated by genipin. This dually-network arrangement significantly bolstered the structure, proving effective for hemostatic control. In addition, hydrogels can be triggered for degradation by proteases highly expressed in the wound microenvironment, releasing drugs like indomethacin (IDM) and CS. This characteristic introduced efficient multi-faceted wound management in vitro and in vivo, such as anti-inflammatory and antibacterial activities, ultimately augmenting the wound healing process. Thus, the development of a dually cross-linked hydrogel that enables smart drug release triggered by specific wound microenvironment presents considerable potential within the realm of wound management.


Assuntos
Quitosana , Hemostáticos , Hemostáticos/farmacologia , Peptídeos , Antibacterianos , Hidrogéis , Indometacina
3.
Small ; : e2309054, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081131

RESUMO

Photodynamic therapy (PDT) is an effective approach for treating melanoma. However, the photosensitizers employed in PDT can accumulate in healthy tissues, potentially causing harm to normal cells and resulting in side effects such as heightened photosensitivity. To address this, an activatable photosensitizer (PSD) by linking PpIX with a fluorescence quencher using a disulfide bond is designed. PSD responded to endogenous GSH, showing high selectivity for A375 cells. To enhance PSD's bioavailability and anticancer efficacy, an enzyme-responsive nanoplatform based on a lonidamine-derived self-assembling peptide is developed. Initially, PSD and the peptide self-assembled into nanoparticles, displaying potent tumor targeting of PSD in vivo. Upon cell uptake, these nanoparticles specifically responded to elevated cathepsin B, causing nanoparticle disintegration and releasing PSD and lonidamine prodrug (LND-1). PSD is selectively activated by GSH for cancer-specific fluorescence imaging and precision PDT, while LND-1 targeted mitochondria, forming a fibrous lonidamine depot in situ and intensifying photosensitizer's cytotoxicity through ROS generation, mitochondrial dysfunction, and DNA damage. Notably, intravenous administration of LND-1-PEG@PSD with light irradiation significantly suppressed A375-xenografted mouse tumor growth, with minimal systemic toxicity. Together, the synergy of activatable photosensitizer and enzyme-responsive nanoplatform elevates PDT precision and diminishes side effects, showcasing significant potential in the realm of cancer nanomedicine.

4.
Anal Chem ; 95(23): 9097-9106, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37249373

RESUMO

Noninvasive monitoring of chymotrypsin-like (ChT-L) activity of proteasomes is of great significance for the diagnosis and prognosis of various cancers. However, commercially available proteasome probes usually lack adequate cancer-cell selectivity. To noninvasively monitor ChT-L activity of proteasomes in living cells, we rationally designed a cascade-activated AIEgen-peptide probe (abbreviated as TPE-1p), which self-assembled in aqueous solution to exhibit bright fluorescence in response to sequential treatment of alkaline phosphatase (ALP) and ChT-L. Transmission electron microscopy, enzymatic kinetics, and in vitro fluorescence experiments validated that TPE-1p was efficiently dephosphorylated by ALP to generate TPE-1, which was recognized by ChT-L in the proteasome, and transformed to form nanofibers with strong fluorescence signals. Cell imaging experiments revealed that bright blue fluorescence was observed in TPE-1p-treated HeLa cells, whereas NIH3T3 and HepG2 cells showed less fluorescence at the same condition. The enhanced fluorescence signals in HeLa cells were attributed to the high activities of endogenous ALP and ChT-L. Moreover, TPE-1p was utilized to noninvasively assess the inhibition efficiency of a ChT-L inhibitor (bortezomib, abbreviated as Btz) in HeLa cells. Significant correlation was found between the fluorescence signals of TPE and the viabilities of Btz-treated cells in concentration ranges from 0 to 1 µM, indicating that TPE-1p could be employed to predict the activity of ChT-L inhibitors. The design of the cascade-activated AIEgen-peptide probe provides a viable approach for noninvasively monitoring the ChT-L activity of proteasomes in living cells, which facilitates high-throughput screening of ChT-L inhibitors in cancer therapy.


Assuntos
Neoplasias , Complexo de Endopeptidases do Proteassoma , Animais , Camundongos , Humanos , Quimotripsina , Células HeLa , Células NIH 3T3 , Peptídeos , Fosfatase Alcalina , Corantes Fluorescentes
5.
Acta Biomater ; 155: 139-153, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36371006

RESUMO

The use of lonidamine (LND) in photodynamic therapy (PDT) provides a viable approach to develop low-dose PDT modules with high efficacy, for LND potentiates cytotoxicity of photosensitizers through dysregulation of mitochondrial function. Yet, the efficacy of LND is restricted by its low accumulation in cancer cells, especially in the mitochondrial compartments. To address the problem, we design an LND-derived self-assembling peptide molecule (LND-K) that dually targets integrin receptors and mitochondria of cancer cells. The targeted cellular delivery of LND-K gives higher efficacy in ablation of mitochondrial function in melanoma cells A375, as compared to free LND or the control molecule that lacks mitochondria-targeting moieties. To integrate LND-K in a typical PDT module, we develop a nanofibrillar hydrogel system through co-assembly of LND-K and TPPS4, an anionic photosensitizer that forms tight electrostatic interactions with cationic residues of LND-K. Notably, hydrogel formulation of LND-K/TPPS4 facilitates slow release of TPPS4 over 14 days in vitro, and displays a longer retention time than aqueous solution of TPPS4in vivo. By integrating a mitochondria-targeted molecule (LND-K) in a typical PDT module, we achieve synergistic killing of A375 cells with dual drugs, where LND-K not only serves as a chemotherapeutic drug, but also potentiates the cytotoxicities of TPPS4 toward A375 cells in vitro and in vivo. The peptide-based drug self-delivery system promises the development of efficacious combination treatments against cancer, that integrate cell sensitization with existing anticancer modules (e.g., chemotherapy and PDT) for enhanced therapeutic efficacy. STATEMENT OF SIGNIFICANCE: This study reports the design and synthesis of a lonidamine (LND)-derived self-assembling peptide (LND-K) that dually targets integrin receptors and mitochondria of cancer cells. Under the precision guidance of a mitochondria-targeting sequence, LND-K-containing nanofibers target mitochondria and ablate mitochondrial functions. On one hand, the targeted delivery of LND-K reduces cell viabilities through a chemotherapy route; on the other hand, LND-K sensitizes cancer cells for subsequent PDT treatment with enhanced efficacy, which is mediated by induction of ROS, loss of mitochondrial membrane potential, and decrease of cellular ATP level. We believe that the design of mitochondria-targeted drug delivery systems with a self-assembling molecule provides a new approach to potentiate cytotoxicity of photosensitizers in a low-dose PDT module.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/uso terapêutico , Linhagem Celular Tumoral , Peptídeos/química , Integrinas
6.
J Pharm Biomed Anal ; 219: 114863, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35785651

RESUMO

Asparagi Radix (AR), a traditional Chinese medicine, is the dried roots of Asparagus cochinchinensis (Lour.) Merr. Modern pharmacological studies have shown that AR has various excellent bioactivities, such as antioxidative, antitumor, antibacterial, anti-inflammatory, and hypoglycemic effects. However, the quality control method of AR is incomplete and there are various AR adulterants in markets due to their similar morphological characters. Here, holistic and practical quality evaluation methods were developed to chemically distinguish three common Asparagus species in markets, including Asparagus cochinchinensis (Lour.) Merr., Asparagus officinalis L., and Asparagus lycopodineus (Baker) F.T.Wang & Tang. The chemical constituents of three species were rapidly tentatively annotated using a combination of ultra-high pressure liquid chromatography-linear ion trap-orbitrap high resolution mass spectrometry (UHPLC-LTQ-Orbitrap-MS) and molecular networking (MN). Fifty-six steroidal saponins were annotated, including common and characteristic chemical constituents of the three Asparagus species. Besides, to establish holistic and practical methods to differentiate three Asparagus species, an HPLC-ELSD (evaporative light scattering detector) was applied for fingerprint analysis and content determination of the sum of protoneodioscin and protodioscin of twenty samples. Each Asparagus species showed characteristic chemical profile and AR showed much higher level of the sum of protoneodioscin and protodioscin than that in the others. The above analyses showed that the three Asparagus species mainly contain steroidal saponins and the developed HPLC-ELSD profile of saponin can be used to differentiate them. In conclusion, this study reveals the different chemical constituents of three Asparagus species and provides relatively feasible quality evaluation methods for them which are essential for the rational utilization of these Asparagus species.


Assuntos
Asparagus , Saponinas , Asparagus/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Gasosa-Espectrometria de Massas , Saponinas/análise , Espectrometria de Massas em Tandem/métodos
7.
Molecules ; 23(2)2018 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-29382158

RESUMO

Tinospora sinensis, a kind of Chinese folk medicine, has functions of harmonizing qi and blood, dredging the channels and collaterals, calming and soothing the nerves. In the present study, a method based on high-performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometry (HPLC-LTQ-Orbitrap) was developed for the systematical characterization of the non-diterpenoid constituents which possessed remarkable biological activities in T. sinensis, like anti-tumor, anti-inflammatory, hypoglycemic activity and immunomodulatory activity. Based on the accurate mass measurement (<5 ppm), retention times and MS fragmentation ions, 60 non-diterpenoid constituents were unambiguously or tentatively characterized from T. sinensis extract, including 27 alkaloids, 23 phenylpropanoids, seven sesquiterpenoids and three other constituents. Among them, 13 compounds were tentatively identified as new compounds. Finally, three of the non-diterpenoid constituents were purified and identified, which further confirmed the validity of the results. This study demonstrated that the HPLC-LTQ-Orbitrap MSn platform was a useful and efficient analytical tool to screen and identify constituents in natural medicine.


Assuntos
Anti-Inflamatórios/análise , Antineoplásicos Fitogênicos/análise , Hipoglicemiantes/análise , Tinospora/química , Alcaloides/análise , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Fenilpropionatos/análise , Sesquiterpenos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA