Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 445: 138662, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354641

RESUMO

Understanding the basic solubilization of fish myofibrillar proteins (MPs) in common monovalent chloride solutions is crucial for muscle food processing. In this study, the differential proteomic profiles of MPs during extraction and solubilization in NaCl and KCl solutions were investigated by using advanced four-dimensional data-independent acquisition (4D DIA) quantitative proteomics for the first time. Compared to routine biochemical analysis, this could provide insights into the solubilization of muscle proteins. We ensure the consistency of the effective ionic strength of NaCl and KCl buffers by adjusting the conductivity. The results showed that NaCl extractor mainly facilitated the solubilization of cytoskeletal proteins, biochemical enzymes, and stromal proteins compared to KCl, such as tubulin, myosin-9, collagen, plectin, protein phosphatase, and cathepsin D. However, no significant difference was observed in the extraction of major sarcomeric proteins, including myosin, actin, troponin C, myosin-binding protein C, M-Protein, α-actinin-3, and tropomyosin.


Assuntos
Proteínas de Peixes , Cloreto de Sódio , Animais , Cloreto de Sódio/farmacologia , Proteínas de Peixes/metabolismo , Proteômica , Miofibrilas/metabolismo , Miosinas/metabolismo , Actinas/metabolismo
2.
J Agric Food Chem ; 69(33): 9706-9715, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34342990

RESUMO

To provide an insight into the oxidation behavior of cysteines in myofibrillar proteins (MPs) during microwave heating (MW), a quantitative redox proteomic analysis based on the isobaric iodoacetyl tandem mass tag technology was applied in this study. MPs from silver carp muscles were subjected to MW and water bath heating (WB) with the same time-temperature profiles to eliminate the thermal differences caused by an uneven energy input. Altogether, 422 proteins were found to be differentially expressed after thermal treatments as compared to that with no heat treatment. However, MW triggered a larger number of proteins and cysteine sites for oxidation. Myosin heavy chain, myosin-binding protein C, nebulin, α-actinin-3-like, and titin were found to be highly susceptible to oxidation under microwave irradiation. Notably, MW caused such modifications at cysteine site 9 in the head of myosin, revealing the enhancement mechanism of MP gelation by excess cysteine cross-linking during microwave processing. Furthermore, Gene Ontology and functional enrichment analyses suggested that the two thermal treatments resulted in some differences in ion binding, muscle cell development, and protein-containing complex assembly. Overall, this study is the first to report the redox proteomic changes caused by MW and WB treatments, thus providing a further understanding of the microwave-induced oxidative modifications of MPs.


Assuntos
Carpas , Animais , Carpas/metabolismo , Cisteína/metabolismo , Micro-Ondas , Oxirredução , Proteômica
3.
Food Chem ; 284: 45-52, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-30744866

RESUMO

Microwave (MW) heating improved the activity of transglutaminase (TGase) by inducing conformational changes due to structural modification. However, when TGase and myofibrillar protein were heated, the solubility and degree of crosslinking were similar. Further, the gel properties of the mixed solution pre-gelled by MW heating were lower than that obtained with water bath (WB) pre-gelling. We compared the effects on myofibrillar proteins at the same heating rate, our results showed that MW promoted aggregation, as the particle distribution tended toward larger molecular size. The increase of random coil as investigated by circular dichroism (CD) indicated that WB induced the unfolding of myofibrillar protein. MW enhanced intermolecular forces by engendering more disulfide bonds, which hindered the catalysis by TGase. Finally, SDS-PAGE indicated that the myosin molecules had more head crosslinking during MW treatment. MW and WB cause different response behaviors of myofibrillar protein, thereby affecting the catalytic effect of TGase.


Assuntos
Micro-Ondas , Proteínas Musculares/metabolismo , Miofibrilas/química , Transglutaminases/metabolismo , Catálise , Dicroísmo Circular , Reagentes de Ligações Cruzadas , Eletroforese em Gel de Poliacrilamida , Géis/química , Temperatura Alta , Miosinas/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA