Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 357: 142070, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641297

RESUMO

Calcium (Ca2+) and phosphorous (PO43-) significantly influence the form and effectiveness of nitrogen (N), however, the precise mechanisms governing the adsorption of ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) are still lacking. This study employed batch adsorption experiments, charge distribution and multi-site complexation (CD-MUSIC) models and density functional theory (DFT) calculations to elucidate the mechanism by which Ca2+ and PO43- affect the adsorption of NH4+-N and NO3--N on the goethite (GT) surface. The results showed that the adsorption of NH4+-N on the GT exhibited an initial increase followed by a decrease as pH increased, peaking at a pH of 8.5. Conversely, the adsorption of NO3--N decreased with rising pH. According to the CD-MUSIC model, Ca2+ minimally affected the NH4+-N adsorption on the GT but enhanced NO3--N adsorption via electrostatic interaction, promoting the adsorption of ≡FeOH-NO3- and ≡Fe3O-NO3- species. Similarly, PO43- inhibited the adsorption of ≡FeOH-NO3- and ≡Fe3O-NO3- species. However, PO43- boosted NH4+-N adsorption by facilitating the formation of ≡Fe3O-NH4+ via electrostatic interaction and site competition. DFT calculations indicates that although bidentate phosphate (BP) was beneficial to stabilize NH4+-N than monodentate phosphate (SP), SP-NH4+ was the main adsorption configuration at pH 5.5-9.5 owing the prevalence of SP on the GT surface under site competition of NH4+-N. The results of CD-MUSIC model and DFT calculation were verified mutually, and provide novel insights into the mechanisms underlying N fixation and migration in soil.


Assuntos
Compostos de Amônio , Cálcio , Teoria da Densidade Funcional , Nitratos , Nitrogênio , Fósforo , Adsorção , Cálcio/química , Nitrogênio/química , Fósforo/química , Nitratos/química , Compostos de Amônio/química , Compostos Férricos/química , Modelos Químicos , Concentração de Íons de Hidrogênio
2.
Sci Total Environ ; 837: 155879, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35568178

RESUMO

Cadmium (Cd) contamination seriously threatens the soil health and food safety. Combination of amendment and accumulator plant is a green and effective technique to improve phytoremediation of Cd-contaminated alkaline soil. In this study, a potting experiment was conducted to investigate the effect of sulfur on Cd phytoextraction by Cichorium intybus (chicory). Soil chemical and microbial properties were determined to reveal the mechanism of sulfur-assisting Cd phytoremediation by chicory. Soil pH decreased from 7.77 to the lowest 7.30 with sulfur addition (0.6, 0.9 and 1.2 g kg-1, LS, MS and HS treatment); Electric conductivity, sulfate anion and available cadmium concentration increased gradually with increasing sulfur doses. Cd concentration of shoot and root significantly increased from 1.47 to 4.43 mg kg-1, 6.15 to 20.16 mg kg-1 by sulfur treatment relative to CK, which were attributed to increased available Cd concentration induced by decreased pH. Sulfur treatments significantly increased the Cd bioconcentration factor by 64.1%, 118.6%, 201.0% for shoot, 76.3%, 145.6% and 227.7% for root under LS, MS and HS relative to CK treatment, respectively (P < 0.05). However, only MS treatment significantly improved the Cd removal efficiency by 82.9% in comparison of CK treatment (P < 0.05). Microbial community diversity measured by 16SrRNA showed that Thiobacillus and Actinobacteria were the key and dominant strains of soil microbial communities after sulfur addition, which played a pivotal role in the process of sulfur oxidation involved in decrease of soil pH and the transformation of Cd forms. Correlation analysis and path analysis by structural equation model indicated that soil sulfate anion and Thiobacillus directly affected Cd removal efficiency by chicory in Cd-contaminated alkaline soil. This suggests that combination of sulfur and chicory may provide a way to promote Cd bioaccumulation for phytoremediation of Cd-contaminated alkaline soil.


Assuntos
Cichorium intybus , Metais Pesados , Microbiota , Poluentes do Solo , Thiobacillus , Bioacumulação , Biodegradação Ambiental , Cádmio/análise , Metais Pesados/análise , Solo/química , Poluentes do Solo/análise , Sulfatos/análise , Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA