Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nephrol ; 36(5): 1383-1393, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37253904

RESUMO

BACKGROUND: In recent years, chronic kidney disease has increased in the pediatric population and has been related to environmental factors. In the diagnosis of kidney damage, in addition to the traditional parameters, early kidney damage biomarkers, such as kidney injury molecule 1, cystatin C, and osteopontin, among others, have been implemented as predictors of early pathological processes. OBJECTIVE: This study aimed to evaluate the relationship between exposure to environmental pollutants and early kidney damage biomarkers. METHODS: A cross-sectional pilot study was conducted in February 2016 and involved 115 apparently healthy children aged 6-15 residing in Apizaco, Tlaxcala. Participant selection was carried out randomly from among 16,472 children from the municipality of Apizaco. A socio-demographic questionnaire included  age, sex, education, duration of residence in the area, occupation, water consumption and dietary habits, pathological history, and some non-specific symptoms. Physical examination included blood pressure, weight, and height. The urine concentrations of urinary aluminum, total arsenic, boron, calcium, chromium, copper, mercury, potassium, sodium, magnesium, manganese, molybdenum, lead, selenium, silicon, thallium, vanadium, uranium, and zinc, were measured. Four of the 115 participants selected for the study were excluded due to an incomplete questionnaire or lack of a medical examination, leaving a final sample population of 111 participants. RESULTS: The results showed a mean estimated glomerular filtration rate of 89.1 ± 9.98 mL/min/1.73m2 and a mean albumin/creatinine ratio of 12.9 ± 16.7 mg/g urinary creatinine. We observed a positive and significant correlation between estimated glomerular filtration rate with fluoride, total arsenic and lead, and a correlation of albumin/creatinine ratio with fluoride, vanadium, and total arsenic. There was also a significant correlation between the early kidney damage biomarkers and fluoride, vanadium, and total arsenic, except for cystatin C. CONCLUSION: In conclusion, our results show that four urinary biomarkers: α1-microglobulin, cystatin C, kidney injury molecule 1, and neutrophil gelatinase-associated lipocalin are related to environmental exposure to urinary fluoride, vanadium, and total arsenic in our pediatric population.


Assuntos
Arsênio , Insuficiência Renal Crônica , Humanos , Criança , Arsênio/efeitos adversos , Arsênio/análise , Cistatina C , Fluoretos , Vanádio , México/epidemiologia , Estudos Transversais , Creatinina , Projetos Piloto , Rim , Biomarcadores , Albuminas , Taxa de Filtração Glomerular , Lipocalina-2
2.
Environ Res ; 169: 220-228, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30471530

RESUMO

Exposure to inorganic fluoride (F) has been implicated in cardiovascular and kidney dysfunction mainly in adult populations. However, limited epidemiological information from susceptible populations, such as children, is available. In this study we evaluated the relationship of F exposure with some vascular and kidney injury biomarkers in children. A cross-sectional study was conducted in 374 Mexican schoolchildren. Dental fluorosis and F concentrations in the water and urine were evaluated. The glomerular filtration rate (eGFR) and the urinary concentrations of kidney injury molecule 1 (KIM-1) and cystatin-C (uCys-C) were examined to assess kidney injury. The carotid intima media thickness (cIMT) and serum concentrations of vascular adhesion molecule 1 (VCAM-1), intracellular adhesion molecule 1 (ICAM-1), endothelin 1(ET-1) and cystatin-C (sCys-C) were measured to assess vascular alterations. High proportions of children exposed to F were observed (79.7% above 1.2 ppm F in urine) even in the low water F exposure regions, which suggested additional sources of F exposure. In robust multiple linear regression models, urinary F was positively associated with eGFR (ß = 1.3, p = 0.015), uCys-C (ß = -8.5, p = 0.043), VCAM-1 (ß = 111.1, p = 0.019), ICAM-1 (ß = 57, p = 0.032) and cIMT (ß = 0.01, p = 0.032). An inverse association was observed with uCys-C (ß = -8.5, p = 0.043) and sCys-C (ß = -9.6, p = 0.021), and no significant associations with ET-1 (ß = 0.069, p = 0.074) and KIM-1 (ß = 29.1, p = 0.212) were found. Our findings revealed inconclusive results regarding F exposure and kidney injury. However, these results suggest that F exposure is related to early vascular alterations, which may increase the susceptibility of cardiovascular diseases in adult life.


Assuntos
Injúria Renal Aguda/metabolismo , Fluoretos/toxicidade , Adulto , Biomarcadores/metabolismo , Espessura Intima-Media Carotídea , Criança , Estudos Transversais , Humanos , Rim , México
3.
Toxicol Appl Pharmacol ; 352: 97-106, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29800643

RESUMO

Fluoride (F) is a toxicant widely distributed in the environment. Experimental studies have shown kidney toxicity from F exposure. However, co-exposure to arsenic (As) has not been considered, and epidemiological information remains limited. We evaluated the association between F exposure and urinary kidney injury biomarkers and assessed As co-exposure interactions. A cross-sectional study was conducted in 239 adults (18-77 years old) from three communities in Chihuahua, Mexico. Exposure to F was assessed in urine and drinking water, and As in urine samples. We evaluated the urinary concentrations of albumin (ALB), cystatin-C (Cys-C), kidney injury molecule 1 (KIM-1), clusterin (CLU), osteopontin (OPN), and trefoil factor 3 (TFF-3). The estimated glomerular filtration rate (eGFR) was calculated using serum creatinine (Creat) levels. We observed a positive correlation between water and urine F concentrations (ρ = 0.7419, p < 0.0001), with median values of 1.5 mg/L and 2 µg/mL, respectively, suggesting that drinking water was the main source of F exposure. The geometric mean of urinary As was 18.55 ng/mL, approximately 39% of the urine samples had As concentrations above the human biomonitoring value (15 ng/mL). Multiple linear regression models demonstrated a positive association between urinary F and ALB (ß = 0.56, p < 0.001), Cys-C (ß = 0.022, p = 0.001), KIM-1 (ß = 0.048, p = 0.008), OPN (ß = 0.38, p = 0.041), and eGFR (ß = 0.49, p = 0.03); however, CLU (ß = 0.07, p = 0.100) and TFF-3 (ß = 1.14, p = 0.115) did not show significant associations. No interaction with As exposure was observed. In conclusion, F exposure was related to the urinary excretion of early kidney injury biomarkers, supporting the hypothesis of the nephrotoxic role of F exposure.


Assuntos
Arsênio/efeitos adversos , Exposição Ambiental/efeitos adversos , Fluoretos/efeitos adversos , Nefropatias/induzido quimicamente , Rim/efeitos dos fármacos , Poluentes Químicos da Água/efeitos adversos , Adolescente , Adulto , Idoso , Albuminúria/induzido quimicamente , Albuminúria/diagnóstico , Albuminúria/urina , Arsênio/urina , Biomarcadores/urina , Clusterina/urina , Estudos Transversais , Cistatina C/urina , Monitoramento Ambiental/métodos , Feminino , Fluoretos/urina , Taxa de Filtração Glomerular/efeitos dos fármacos , Receptor Celular 1 do Vírus da Hepatite A/análise , Humanos , Rim/metabolismo , Rim/fisiopatologia , Nefropatias/diagnóstico , Nefropatias/fisiopatologia , Nefropatias/urina , Masculino , México , Pessoa de Meia-Idade , Osteopontina/urina , Valor Preditivo dos Testes , Medição de Risco , Fator Trefoil-3/urina , Poluentes Químicos da Água/urina , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA