Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nat Commun ; 15(1): 2859, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570500

RESUMO

Cold-induced injuries severely limit opportunities and outcomes of hypothermic therapies and organ preservation, calling for better understanding of cold adaptation. Here, by surveying cold-altered chromatin accessibility and integrated CUT&Tag/RNA-seq analyses in human stem cells, we reveal forkhead box O1 (FOXO1) as a key transcription factor for autonomous cold adaptation. Accordingly, we find a nonconventional, temperature-sensitive FOXO1 transport mechanism involving the nuclear pore complex protein RANBP2, SUMO-modification of transporter proteins Importin-7 and Exportin-1, and a SUMO-interacting motif on FOXO1. Our conclusions are supported by cold survival experiments with human cell models and zebrafish larvae. Promoting FOXO1 nuclear entry by the Exportin-1 inhibitor KPT-330 enhances cold tolerance in pre-diabetic obese mice, and greatly prolongs the shelf-life of human and mouse pancreatic tissues and islets. Transplantation of mouse islets cold-stored for 14 days reestablishes normoglycemia in diabetic mice. Our findings uncover a regulatory network and potential therapeutic targets to boost spontaneous cold adaptation.


Assuntos
Diabetes Mellitus Experimental , Fatores de Transcrição Forkhead , Camundongos , Humanos , Animais , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Transporte Ativo do Núcleo Celular , Peixe-Zebra/metabolismo , Carioferinas/metabolismo
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167130, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537684

RESUMO

Hepatic ischemia-reperfusion injury(HIRI) remains to be an unsolved risk factor that contributes to organ failure after liver surgery. Our clinical retrospective study showed that lower donor liver CX3-C chemokine receptor-1(CX3CR1) mRNA expression level were correlated with upregulated pro-resolved macrophage receptor MERTK, as well as promoted restoration efficiency of allograft injury in liver transplant. To further characterize roles of CX3CR1 in regulating resolution of HIRI, we employed murine liver partial warm ischemia-reperfusion model by Wt & Cx3cr1-/- mice and the reperfusion time was prolonged from 6 h to 4-7 days. Kupffer cells(KCs) were depleted by clodronate liposome(CL) in advance to focus on infiltrating macrophages, and repopulation kinetics were determined by FACS, IF and RNA-Seq. CX3CR1 antagonist AZD8797 was injected i.p. to interrogate potential pharmacological therapeutic strategies. In vitro primary bone marrow macrophages(BMMs) culture by LXR agonist DMHCA, as well as molecular and functional studies, were undertaken to dissect roles of CX3CR1 in modulating macrophages cytobiological development and resolutive functions. We observed that deficiency or pharmacological inhibition of CX3CR1 facilitated HIRI resolution via promoted macrophages migration in CCR1/CCR5 manner, as well as enhanced MerTK-mediated efferocytosis. Our study demonstrated the critical roles of CX3CR1 in progression of HIRI and identified it as a potential therapeutic target in clinical liver transplantation.


Assuntos
Receptor 1 de Quimiocina CX3C , Fígado , Camundongos Knockout , Traumatismo por Reperfusão , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/genética , Camundongos , Fígado/metabolismo , Fígado/patologia , Masculino , Humanos , Células de Kupffer/metabolismo , Células de Kupffer/patologia , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo , Transplante de Fígado , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Homeostase , Modelos Animais de Doenças
3.
Theranostics ; 13(14): 4802-4820, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771779

RESUMO

Rationale: Liver resection and transplantation surgeries are accompanied by hepatic ischemia-reperfusion (HIR) injury that hampers the subsequent liver recovery. Given that the liver is the main organ for metabolism and detoxification, ischemia-reperfusion in essence bestows metabolic stress upon the liver and disrupts local metabolic and immune homeostasis. Most of the recent and current research works concerning HIR have been focusing on addressing HIR-induced hepatic injury and inflammation, instead of dealing with the metabolic reprogramming and restoration of redox homeostasis. As our previous work uncovers the importance of 5-aminolevulinate (5-ALA) synthesis during stress adaptation, here we evaluate the effects of supplementing 5-ALA to mitigate HIR injury. Methods: 5-ALA was supplemented into the mice or cultured cells during the ischemic or oxygen-glucose deprivation (OGD) phase. Following reperfusion or reoxygenation, cellular metabolism and energy homeostasis, mitochondrial production of reactive oxygen species (ROS) and transcriptomic changes were evaluated in HIR mouse models or cultured hepatocytes and macrophages. Liver injury, hepatocytic functional tests, and macrophagic M1/M2 polarization were assessed. Results: Dynamic changes in the expression of key enzymes in 5-ALA metabolism were first confirmed in donor and mouse liver samples following HIR. Supplemented 5-ALA modulated mouse hepatic lipid metabolism and reduced ATP production in macrophages following HIR, resulting in elevation of anti-inflammatory M2 polarization. Mechanistically, 5-ALA down-regulates macrophagic chemokine receptor CX3CR1 via the repression of RelA following OGD and reoxygenation (OGD/R). Cx3cr1 KO mice demonstrated milder liver injuries and more macrophage M2 polarization after HIR. M2 macrophage-secreted chitinase-like protein 3 (CHIL3; CHI3L1 in human) is an important HIR-induced effector downstream of CX3CR1 deficiency. Addition of CHIL3/CHI3L1 alone improved hepatocellular metabolism and reduced OGD/R-inflicted injuries in cultured mouse and human hepatocytes. Combined treatment with 5-ALA and CHIL3 during the ischemic phase facilitated lipid metabolism and ATP production in the mouse liver following HIR. Conclusion: Our results reveal that supplementing 5-ALA promotes macrophagic M2 polarization via downregulation of RelA and CX3CR1 in mice following HIR, while M2 macrophage-produced CHIL3/CHI3L1 also manifests beneficial effects to the recovery of hepatic metabolism. 5-ALA and CHIL3/CHI3L1 together mitigate HIR-induced mitochondrial dysfunction and hepatocellular injuries, which may be developed into safe and effective clinical treatments to attenuate HIR injuries.


Assuntos
Ácido Aminolevulínico , Traumatismo por Reperfusão , Camundongos , Humanos , Animais , Ácido Aminolevulínico/farmacologia , Fígado/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Isquemia/metabolismo , Trifosfato de Adenosina/metabolismo , Proteína 1 Semelhante à Quitinase-3/metabolismo
5.
Cancer Res ; 82(22): 4153-4163, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36098964

RESUMO

Menin is necessary for the formation of the menin/mixed lineage leukemia (MLL) complex and is recruited directly to chromatin. Menin is an important tumor suppressor in several cancer types, including lung cancer. Here, we investigated the role of MLL in menin-regulated lung tumorigenesis. Ablation of MLL suppressed KrasG12D-induced lung tumorigenesis in a genetically engineered mouse model. MLL deficiency decreased histone H3 lysine 4 trimethylation (H3K4me3) and subsequently suppressed expression of the Ras protein-specific guanine nucleotide-releasing factor 1 (Rasgrf1) gene. Rasgrf1 was essential for the GTP-bound active state of Kras and the activation of Kras downstream pathways as well as their cancer-promoting activities. MI-3, a small-molecule inhibitor targeting MLL, specifically inhibited the growth of Kras-mutated lung cancer cells in vitro and in vivo with minimal effect on wild-type Kras lung cancer growth. Together, these results demonstrate a novel tumor promoter function of MLL in mutant Kras-induced lung tumorigenesis and further indicate that specific blockade of the MLL-Rasgrf1 pathway may be a potential therapeutic strategy for the treatment of tumors containing Kras mutations. SIGNIFICANCE: Activation of mutant Kras is dependent on MLL-mediated epigenetic regulation of Rasgrf1, conferring sensitivity to small-molecule inhibition of MLL in Kras-driven lung cancer.


Assuntos
Epigênese Genética , Neoplasias Pulmonares , Proteína de Leucina Linfoide-Mieloide , ras-GRF1 , Animais , Camundongos , Transformação Celular Neoplásica/metabolismo , Epigênese Genética/genética , Epigênese Genética/fisiologia , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Leucemia/genética , Leucemia/patologia , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , ras-GRF1/genética , ras-GRF1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Mutação
6.
Invest Ophthalmol Vis Sci ; 61(3): 12, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32176259

RESUMO

Purpose: The microRNA cluster miR-183C, which includes miR-183 and two other genes, is critical for multiple sensory systems. In mouse retina, removal of this cluster results in photoreceptor defects in polarization, phototransduction, and outer segment elongation. However, the individual roles of the three components of this cluster are not clearly known. We studied the separate role of mouse miR-183 in in vivo. Methods: miR-183 knockout mice were generated using the CRISPR/Cas9 genome-editing system. Electroretinography were carried out to investigate the changes of retinal structures and function. miR-183 was overexpressed by subretinal adeno-associated virus (AAV) injection in vivo. Rnf217, a target of miR-183 was overexpressed by cell transfection of the photoreceptor-derived cell line 661W in vitro. RNA sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to compare the gene expression changes in AAV-injected mice and transfected cells. Results: The miR-183 knockout mice showed progressively attenuated electroretinogram responses. Over- or under-expression of Rnf217, a direct target of miR-183, misregulated expression of cilia-related BBSome genes. Rnf217 overexpression also led to compromised electroretinography responses in WT mice, indicating that it may contribute to functional abnormalities in miR-183 knockout mice. Conclusions: miR-183 is essential for mouse retinal function mediated directly and indirectly through Rnf217 and cilia-related genes. Our findings provide valuable insights into the explanation and analysis of the regulatory role of the individual miR-183 in miR-183C.


Assuntos
Deleção de Genes , MicroRNAs/genética , Retina/fisiopatologia , Degeneração Retiniana/genética , Animais , Células Cultivadas , Cílios/metabolismo , Modelos Animais de Doenças , Eletrorretinografia , Edição de Genes/métodos , Regulação da Expressão Gênica/fisiologia , Vetores Genéticos , Camundongos Knockout , MicroRNAs/fisiologia , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneração Retiniana/fisiopatologia , Transfecção/métodos
7.
Nat Commun ; 11(1): 1009, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32081882

RESUMO

The MEN1 gene, a tumor suppressor gene that encodes the protein menin, is mutated at high frequencies in neuroendocrine (NE) tumors; however, the biological importance of this gene in NE-type lung cancer in vivo remains unclear. Here, we established an ATII-specific KrasG12D/+/Men1-/- driven genetically engineered mouse model and show that deficiency of menin results in the accumulation of DNA damage and antagonizes oncogenic Kras-induced senescence and the epithelial-to-mesenchymal transition during lung tumorigenesis. The loss of menin expression in certain human primary lung cancers correlates with elevated NE profiles and reduced overall survival.


Assuntos
Dano ao DNA/genética , Neoplasias Pulmonares/genética , Tumores Neuroendócrinos/genética , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Diferenciação Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Knockout , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Prognóstico , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais
8.
Cancer Gene Ther ; 27(7-8): 539-547, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31383953

RESUMO

Several brain tumors is closely related to the disorder of chromatin histone modification, whereas the epigenetic mechanisms of the incidence of highly malignant adult glioma is not yet deeply studied. Deletion or mutation of the MEN1 gene, which encodes the epigenetic regulator menin, specifically induces poorly differentiated neuroendocrine tumors; however, the biological and clinical importance of MEN1 in the nervous system remains poorly understood. Menin expression was robustly activated in 44.4% of adult gliomas. Abnormally high expression of menin was closely related to a shorter median survival time of 20 months, a larger tumor volume and a higher percentage of Ki67 staining. Interestingly, menin expression was also activated in the cytoplasm of tumor cells (38.8%) and was also closely related to the poor prognosis of patients with glioma. Importantly, in a screening of 96 types of small-molecule targeted histone modification regulators, menin inhibitors were found to significantly block the proliferation of adult glioma cells. Our findings confirm that menin is a potential biomarker of poor prognosis in adult gliomas, independent of the WHO grade. Targeting menin may effectively inhibit certain gliomas, and this information provides novel insight into therapeutic strategies for glioma.


Assuntos
Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Proteínas Proto-Oncogênicas/genética , Adulto , Idoso , Neoplasias Encefálicas/metabolismo , Feminino , Glioma/diagnóstico , Glioma/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico , Adulto Jovem
9.
Clin Genet ; 96(1): 61-71, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30945270

RESUMO

Adenosine diphosphate (ADP)-ribosylation factor-like 2 (ARL2) protein participates in a broad range of cellular processes and acts as a mediator for mutant ARL2BP in cilium-associated retinitis pigmentosa and for mutant HRG4 in mitochondria-related photoreceptor degeneration. However, mutant ARL2 has not been linked to any human disease so far. Here, we identified a de novo variant in ARL2 (c.44G > T, p.R15L) in a Chinese pedigree with MRCS (microcornea, rod-cone dystrophy, cataract, and posterior staphyloma) syndrome through whole-exome sequencing and co-segregation analysis. Co-immunoprecipitation assay and immunoblotting confirmed that the mutant ARL2 protein showed a 62% lower binding affinity for HRG4 while a merely 18% lower binding affinity for ARL2BP. Immunofluorescence images of ARL2 and HRG4 co-localizing with cytochrome c in HeLa cells described their relationship with mitochondria. Further analyses of the mitochondrial respiratory chain and adenosine triphosphate production showed significant abnormalities under an ARL2-mutant condition. Finally, we generated transgenic mice to test the pathogenicity of this variant and observed retinal degeneration complicated with microcornea and cataract that were similar to those in our patients. In conclusion, we uncover ARL2 as a novel candidate gene for MRCS syndrome and suggest a mitochondria-related mechanism of the first ARL2 variant through site-directed mutagenesis studies.


Assuntos
Doenças da Coroide/diagnóstico , Doenças da Coroide/genética , Sequenciamento do Exoma , Oftalmopatias Hereditárias/diagnóstico , Oftalmopatias Hereditárias/genética , Proteínas de Ligação ao GTP/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Fenótipo , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Alelos , Substituição de Aminoácidos , Animais , Proteínas de Transporte , Criança , Consanguinidade , Modelos Animais de Doenças , Feminino , Proteínas de Ligação ao GTP/química , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Mutação , Linhagem , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
10.
Exp Mol Med ; 51(2): 1-20, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30804322

RESUMO

Radiotherapy is a frequent mode of cancer treatment, although the development of radioresistance limits its effectiveness. Extensive investigations indicate the diversity of the mechanisms underlying radioresistance. Here, we aimed to explore the effects of extracellular signal-regulated kinase 5 (ERK5) on lung cancer radioresistance and the associated mechanisms. Our data showed that ERK5 is activated during solid lung cancer development, and ectopic expression of ERK5 promoted cell proliferation and G2/M cell cycle transition. In addition, we found that ERK5 is a potential regulator of radiosensitivity in lung cancer cells. Mechanistic investigations revealed that ERK5 could trigger IR-induced activation of Chk1, which has been implicated in DNA repair and cell cycle arrest in response to DNA double-strand breaks (DSBs). Subsequently, ERK5 knockdown or pharmacological inhibition selectively inhibited colony formation of lung cancer cells and enhanced IR-induced G2/M arrest and apoptosis. In vivo, ERK5 knockdown strongly radiosensitized A549 and LLC tumor xenografts to inhibition, with a higher apoptotic response and reduced tumor neovascularization. Taken together, our data indicate that ERK5 is a novel potential target for the treatment of lung cancer, and its expression might be used as a biomarker to predict radiosensitivity in NSCLC patients.


Assuntos
Dano ao DNA , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Tolerância a Radiação/genética , Animais , Apoptose/genética , Biomarcadores , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Proteína Quinase 7 Ativada por Mitógeno/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Proteína Supressora de Tumor p53/metabolismo
11.
Biochim Biophys Acta Gene Regul Mech ; 1861(2): 117-124, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29413895

RESUMO

The expression of insulin-like growth factor 2 (IGF2), a classical imprinting gene, didn't completely correlate with its imprinting profiles in hepatocellular carcinoma (HCC). The mechanistic importance of promoter activity in regulation of IGF2 has not been fully clarified. Here we show that histone 3 lysine 4 trimethylation (H3K4me3) modified by menin-MLL complex of IGF2 promoter contributes to promoter activity of IGF2. The strong binding of menin and abundant H3K4me3 at the DNA demethylated P3/4 promoters were observed in Hep3B cells with the robust expression of IGF2. In IGF2-low-expressing HepG2 cells, menin didn't bind to DNA hypermethylated P3/4 regions; however, menin overexpression inhibited DNA methylation and promoted H3K4me3 at the P3/4 as well as IGF2 expression in HepG2. In addition, the H3K4me3 at P3/4 locus was activated in primary HCC specimens with high IGF2 expression. Furthermore, inhibition of the menin/MLL interaction via MI-2/3 reduced IGF2 expression, inhibited the IGF1R-AKT pathway, and significantly repressed HCC with robust expression of IGF2. Taken together, we conclude that H3K4me3 of P3/4 locus mediated by the menin-MLL complex is a novel epigenetic mechanism for releasing IGF2.


Assuntos
Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Impressão Genômica/genética , Fator de Crescimento Insulin-Like II/genética , Regiões Promotoras Genéticas/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Metilação de DNA , Células Hep G2 , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Lisina/metabolismo , Metilação , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
12.
Mol Med Rep ; 17(1): 1247-1252, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29115627

RESUMO

It has been previously demonstrated that sparstolonin B (SsnB) inhibits toll­like receptor (TLR)­2 and TLR­4. The present study investigated the effect of SsnB on neuropathic pain (NP). A chronic constriction injury (CCI) model was constructed in rats and the protein expression of TLR­2 and TLR­4 was determined by western blot analysis. Rats were divided into the following three groups: Rats with sham surgery (control group); rats with CCI (model group); and rats with CCI and injection of SsnB (SsnB group). The mechanical withdrawal threshold (MWT) was measured by using Von Frey filaments. In addition, the mRNA and protein expression levels of nuclear factor­κB (NF­κB) were investigated by reverse transcription­quantitative polymerase chain reaction and western blot analysis, respectively, and the concentrations of tumor necrosis factor­α (TNF­α) and interleukin (IL)­6 were determined by ELISA. Compared with control rats, the protein expression levels of TLR­2 and TLR­4 were increased in model rats (P<0.001). At 7 and 14 days after surgery, the MWTs in the model group were significantly reduced compared with the control group (P<0.001). However, the MWTs in the SsnB group were significantly increased compared with the model group (P<0.001). The results also demonstrated that the mRNA and protein expression levels of NF­κB, and the protein expression levels of TNF­α and IL­6, were increased in model group compared with the control group (P<0.001). Furthermore, these increases in expression were all reduced in the SsnB group compared with the model group. Therefore, the results indicate that SsnB may alleviate NP via suppression of TLR­2 and TLR­4, and may be a potential drug for the treatment of NP.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Neuralgia/metabolismo , Receptor 2 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Mediadores da Inflamação/metabolismo , Masculino , NF-kappa B/genética , NF-kappa B/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
13.
Am J Cancer Res ; 7(9): 1874-1883, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28979810

RESUMO

Histone modification and chromatin remodeling are important events in response to DNA damage, and Polycomb group (PcG) proteins, catalyzing H3K27 methylation, are involved. However, the biological function and mechanism of PcG in DNA damage are not fully understood. Additionally, downstream effectors in hepatocellular carcinoma (HCC) remain unclear. The present study investigated the biological and mechanistic roles of PcG in the DNA damage response induced by chemotherapeutic drugs in HCC. It was found that chemotherapy drugs, such as epirubicin (EPB) and mitomycin C (MMC), effectively blocked expression of PcG in p53-wild-type HepG2 cells but not in PLC/PRF5 and Hep3B cells with p53 mutation or deletion. PcG-related target genes involved in DNA damage were identified, including p53, Ataxia telangiectasia mutated (ATM) and Forkhead box O3 (FOXO3). Moreover, targeting PcG-induced p53 expression was associated with increased drug sensitivity in HCC cells. shRNA targeting enhancer of zeste homolog 2 (EZH2) or its inhibitor GSK126 significantly promoted chemotherapeutic drug-induced genotoxicity and increased HepG2 cell chemosensitivity. Mechanistically, chromatin immunoprecipitation (ChIP) assays confirmed that PcG binds to the ATM promoter and inhibits its expression through covalent modification of H3K27me3. Herein, we establish a potential chemotherapy association with GSK126, and the findings suggest this link might represent a new strategy for increasing the sensitivity of HCC to chemotherapeutic agents.

14.
FEBS J ; 284(9): 1309-1323, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28304152

RESUMO

Subset heterogeneity of the mononuclear phagocyte system (MPS) is controlled by defined transcriptional networks and programs; however, the dynamic establishment of programs that control broad, orchestrated expression of transcription factors (TFs) during the progression of monocyte-into-phagocyte (MP) differentiation remains largely unexplored. By using chromatin immunoprecipitation assays, we show the extensive trimethylation of histone H3 lysine 4 (H3K4me3) as well as histone H3 lysine 27 (H3K27me3) occupancy with broad footprints at the promoters of MP differentiation-related TFs, such as HOXA and FOXO genes, KLF4, IRF8 and others. The rapid repression of HOXA genes was closely associated with the MP differentiation program. H3K4me3 participates in regulating HOXA genes at mild and terminal differentiation periods, while H3K27me3 maintains low-level expression of HOXA genes at phagocytic maintenance periods. Furthermore, the reprogramming of H3K27me3 plays a major role in the up-regulation of KLF4 and FOXO genes during MP differentiation. Importantly, the pharmacological inhibition of H3K4me3 and/or H3K27me3 strikingly promotes the differentiation programs of THP-1 and K562 cells. Together, these findings elucidate mechanisms crucial to the dynamic establishment of epigenetic memory, which is central to the maintenance of the MP differentiation blockade.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/metabolismo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/enzimologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Células Cultivadas , Imunoprecipitação da Cromatina , Fatores de Transcrição Forkhead , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Lisina , Macrófagos/citologia , Metilação , Camundongos Endogâmicos C57BL , Monócitos/citologia , Regiões Promotoras Genéticas , Interferência de RNA , Organismos Livres de Patógenos Específicos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética
15.
J Endocrinol ; 230(3): 347-55, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27432891

RESUMO

Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant inherited syndrome characterized by multiple tumors in the parathyroid glands, endocrine pancreas and anterior pituitary. Recent clinical studies have revealed a strong association between MEN1 syndrome and the risk of developing diabetes mellitus; however, the underlying mechanisms remain unknown. In this study, heterozygous Men1 knockout (Men1(+/-)) mice were used as MEN1 models to investigate MEN1-associated glucose metabolic phenotypes and mechanisms. Heterozygous deficiency of Men1 in 12-month-old male mice induced fasting hyperglycemia, along with increased serum insulin levels. However, male Men1(+/-) mice did not show insulin resistance, as evidenced by Akt activation in hepatic tissues and an insulin tolerance test. Increased glucose levels following pyruvate challenge and expression of key gluconeogenic genes suggested increased hepatic glucose output in the male Men1(+/-) mice. This effect could be partly due to higher basal serum glucagon levels, which resulted from pancreatic islet cell proliferation induced by heterozygous loss of Men1 Taken together, our results indicate that fasted male Men1(+/-) mice, in the early stage of development of MEN1, display glucose metabolic disorders. These disorders are caused not by direct induction of insulin resistance, but via increased glucagon secretion and the consequent stimulation of hepatic glucose production.


Assuntos
Jejum/sangue , Hiperglicemia/sangue , Hiperglicemia/metabolismo , Neoplasia Endócrina Múltipla Tipo 1/metabolismo , Animais , Glucagon/metabolismo , Gluconeogênese/genética , Gluconeogênese/fisiologia , Heterozigoto , Hiperglicemia/genética , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Ilhotas Pancreáticas/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Neoplasia Endócrina Múltipla Tipo 1/genética
16.
Chin Clin Oncol ; 5(6): 76, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28061540

RESUMO

BACKGROUND: The rapid increase in the incidence rate of colorectal cancer has led to the search and identification of biomarkers that can predict risk for and future behavior of this malignancy and management. To study the biological role of the phosphorylated Fas associated death domain (pFADD) gene in colorectal cancer, we performed a GAL4-based yeast two-hybrid screening of a human heart cDNA library. METHODS: A series of two yeast hybrid method was used to identification of protein-protein interaction. It was confirmed by glutathione S-transferase (GST) pull down assay and co-immunoprecipitation (co-IP). Three channeled fluorescence microscopy further confirmed the interaction in cellular level. Xenograft in vivo model was developed and knockdown relevant genes by RNAi techniques and confirmed the relationship which leads to colorectal cancer. RESULTS: Using the FADD cDNA as bait, we identified six putative clones as associated proteins. The interaction of pFADD and metallothionein 2A (MT2A) was confirmed by GST pull-down assays in vitro and co-IP experiments in vivo. FADD co-localized with MT2A mostly to nuclei and slightly to cytoplasm, as shown by three channel fluorescence microscopy. Co-transfection of pFADD with MT2A gene inhibited cell apoptosis and induced cell proliferation in colorectal cancer cells compared with control groups. When we used antisense MT2A and pFADD which is serine 194 in the C terminal of FADD gene that has been reported to be phosphorylated to interdict the effect of respective genes the inhibition of cell proliferation and induction of apoptosis were significantly enhanced in animal model. CONCLUSIONS: Further in this study we identify non-canonical nuclear factor-κB (NF-κB) signaling up regulated and it was directly linked with the tumor necrosis with MT2A and pFADD genes. pFADD with MT2A can inhibit the apoptosis and promote proliferation, of colorectal cancer cells, and antisense sequence of MT2A and pFADD approaches which might swell the combination of deregulated proliferation and suppressed apoptosis.


Assuntos
Neoplasias Colorretais/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Metalotioneína/metabolismo , NF-kappa B/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Proteína de Domínio de Morte Associada a Fas/genética , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos , Metalotioneína/genética , Microscopia de Fluorescência , NF-kappa B/genética , Fosforilação
17.
Am J Cancer Res ; 5(10): 2969-79, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26693053

RESUMO

Although the abnormal expression of Polycomb-group (PcG) proteins is closely associated with carcinogenesis and the clinicopathological features of hepatocellular carcinoma (HCC), the genetic mutation profile of PcG genes has not been well established. In this study of human HCC specimens, we firstly discovered a highly conserved mutation site, G553C, in the Polycomb Repressive Complex 2 (PRC2) gene enhancer of zeste homolog 2 (EZH2). This site also harbors a single nucleotide polymorphism (SNP), rs2302427, which plays an important antagonistic role in HCC. Kaplan-Meier survival curves showed that the tumor-free and overall survival of patients with EZH2 G553C were superior to those without the mutation. The G allele frequencies in patients and healthy subjects were 0.2% and 0.122%, respectively, with significant differences in distribution. The individuals carrying the GG and the GC genotypes at rs2302427 showed 3.083-fold and 1.827-fold higher risks of HCC, respectively, compared with individuals carrying the wild-type allele. Furthermore, Immunohistochemical staining revealed that the expression levels of CBX8 (in 53/123 samples) and BMI1 (in 60/130 samples) were markedly increased in human HCC specimens. Importantly, the overall and tumor-free survival rates were significantly reduced in the group of patients who simultaneously expressed PRC1 and PRC2. These results argue that a combination of PRC1 and PRC2 expression has a significant predictive/prognostic value for HCC patients. Taken together, our results indicate the abnormal expression and genetic mutation of PcG members are two independent events; cumulative genetic and epigenetic alterations act synergistically in liver carcinogenesis.

18.
Cancer Cell ; 28(4): 472-485, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26461093

RESUMO

Human epidermal growth factor receptor 2 (HER2) is upregulated in a subset of human breast cancers. However, the cancer cells often quickly develop an adaptive response to HER2 kinase inhibitors. We found that an epigenetic pathway involving MLL2 is crucial for growth of HER2(+) cells and MLL2 reduces sensitivity of the cancer cells to a HER2 inhibitor, lapatinib. Lapatinib-induced FOXO transcription factors, normally tumor-suppressing, paradoxically upregulate c-Myc epigenetically in concert with a cascade of MLL2-associating epigenetic regulators to dampen sensitivity of the cancer cells to lapatinib. An epigenetic inhibitor suppressing c-Myc synergizes with lapatinib to suppress cancer growth in vivo, partly by repressing the FOXO/c-Myc axis, unraveling an epigenetically regulated FOXO/c-Myc axis as a potential target to improve therapy.


Assuntos
Neoplasias da Mama/genética , Proteínas de Ligação a DNA/genética , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas c-myc/genética , Receptor ErbB-2/antagonistas & inibidores , Animais , Benzodiazepinas/administração & dosagem , Benzodiazepinas/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Epigênese Genética/efeitos dos fármacos , Feminino , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lapatinib , Camundongos , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Quinazolinas/administração & dosagem , Quinazolinas/farmacologia , Receptor ErbB-2/genética , Ensaios Antitumorais Modelo de Xenoenxerto
19.
PLoS One ; 10(3): e0120267, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25815723

RESUMO

Epidemiological studies indicate that smoking is negatively correlated with the incidence and development of Alzheimer's disease (AD). Nicotine was reported to be the active factor. However, the detailed mechanisms still remain to be fully elucidated. Early growth response gene 1 (EGR-1) plays important roles in several important biological processes such as promoting cell growth, differentiation, anti oxidative stress, and apoptosis, but few in the pathogenesis of AD. In the present study, we show that nicotine can activate the MAPK/ERK/EGR-1 signaling pathway partially through α7 nAChR. In addition, the up-regulation of EGR-1 by nicotine can also increase the phosphorylation of CyclinD1 which contributes to the attenuation of amyloid-ß (Aß(25-35)) -induced neurotoxicity. Although nicotine and Aß(25-35) can activate EGR-1, the expression of EGR-1 is down-regulated following treatment with nicotine and Aß(25-35). This study demonstrates that low dose nicotine attenuates Aß(25-35)-induced neurotoxicity in vitro and in vivo through activating EGR-1 pathway.


Assuntos
Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Neuroblastoma/prevenção & controle , Nicotina/farmacologia , Doença de Alzheimer/metabolismo , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Proteína 1 de Resposta de Crescimento Precoce/genética , Imunofluorescência , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Técnicas Imunoenzimáticas , Masculino , Camundongos Endogâmicos C57BL , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células PC12 , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos
20.
Mol Cancer Res ; 12(10): 1388-97, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24916103

RESUMO

UNLABELLED: Alterations of polycomb group (PcG) genes directly modulate the trimethylation of histone H3 lysine 27 (H3K27me3) and may thus affect the epigenome of hepatocellular carcinoma (HCC), which is crucial for controlling the HCC cell phenotype. However, the extent of downstream regulation by PcGs in HCC is not well defined. Using cDNA microarray analysis, we found that the target gene network of PcGs contains well-established genes, such as cyclin-dependent kinase inhibitors (CDKN2A), and genes that were previously undescribed for their regulation by PcG, including E2F1, NOTCH2, and TP53. Using chromatin immunoprecipitation assays, we demonstrated that EZH2 occupancy coincides with H3K27me3 at E2F1 and NOTCH2 promoters. Interestingly, PcG repress the expression of the typical tumor suppressor TP53 in human HCC cells, and an increased level of PcG was correlated with the downregulation of TP53 in certain HCC specimens. Unexpectedly, we did not find obvious H3K27me3 modification or an EZH2 binding signal at the TP53 promoters, suggesting that PcG regulates TP53 expression in an H3K27me3-independent manner. Finally, the reduced expression of PcGs effectively blocked the aggressive signature of liver cancer cells in vitro and in vivo. IMPLICATIONS: Taken together, our results establish the functional and mechanistic significance of certain gene regulatory networks that are regulated by PcGs in HCC.


Assuntos
Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Neoplasias Hepáticas/genética , Lisina/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Proteínas Repressoras/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Movimento Celular , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/patologia , Metilação , Camundongos Nus , Transdução de Sinais , Transcrição Gênica , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA