Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(9): e107764, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25247295

RESUMO

The circumsporozoite protein (CSP) of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite's surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP)-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP) production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assay (IFA), as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS) showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime/boost strategy, ultimately acting as an effective vaccine candidate for the mitigation of P. falciparum-induced malaria.


Assuntos
Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Proteínas de Protozoários/metabolismo , Pseudomonas fluorescens/genética , Proteínas Recombinantes/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Células Hep G2 , Humanos , Vacinas Antimaláricas/química , Malária Falciparum/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Organismos Geneticamente Modificados , Proteínas de Protozoários/genética , Pseudomonas fluorescens/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinação/métodos
2.
Protein Expr Purif ; 78(1): 69-77, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21396452

RESUMO

Cost-effective production of soluble recombinant protein in a bacterial system remains problematic with respect to expression levels and quality of the expressed target protein. These constraints have particular meaning today as "biosimilar" versions of innovator protein drugs are entering the clinic and the marketplace. A high throughput, parallel processing approach to expression strain engineering was used to evaluate soluble expression of human granulocyte colony-stimulating factor (G-CSF) in Pseudomonas fluorescens. The human g-csf gene was optimized for expression in P. fluorescens and cloned into a set of periplasmic expression vectors. These plasmids were transformed into a variety of P. fluorescens host strains each having a unique phenotype, to evaluate soluble expression in a 96-well growth and protein expression format. To identify a strain producing high levels of intact, soluble Met-G-CSF product, more than 150 protease defective host strains from the Pfenex Expression Technology™ toolbox were screened in parallel using biolayer interferometry (BLI) to quantify active G-CSF binding to its receptor. A subset of these strains was screened by LC-MS analysis to assess the quality of the expressed G-CSF protein. A single strain with an antibiotic resistance marker insertion in the pfaI gene was identified that produced>99% Met-GCSF. A host with a complete deletion of the autotransporter-coding gene pfaI from the genome was constructed, and expression of soluble, active Met-GSCF in this strain was observed to be 350mg/L at the 1 liter fermentation scale.


Assuntos
Biotecnologia/métodos , Fator Estimulador de Colônias de Granulócitos/biossíntese , Pseudomonas fluorescens/genética , Proteínas Recombinantes/biossíntese , Animais , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida , Fermentação , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos/isolamento & purificação , Fator Estimulador de Colônias de Granulócitos/farmacologia , Humanos , Cinética , Espectrometria de Massas , Camundongos , Peso Molecular , Periplasma/genética , Periplasma/metabolismo , Pseudomonas fluorescens/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA