Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(6): e0286903, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37310976

RESUMO

The angiotensin receptor neprilysin inhibitor LCZ696 affords superior cardioprotection and renoprotection compared with renin-angiotensin blockade monotherapy, but the underlying mechanisms remain elusive. Herein, we evaluated whether LCZ696 attenuates renal fibrosis by inhibiting ASK1/JNK/p38 mitogen-activated protein kinase (MAPK)-mediated apoptosis in a rat model of unilateral ureteral obstruction (UUO) and in vitro. Rats with UUO were treated daily for 7 days with LCZ696, valsartan, or the selective ATP competitive inhibitor of apoptosis signal-regulating kinase 1 (ASK1), GS-444217. The effects of LCZ696 on renal injury were examined by assessing the histopathology, oxidative stress, intracellular organelles, apoptotic cell death, and MAPK pathways. H2O2-exposed human kidney 2 (HK-2) cells were also examined. LCZ696 and valsartan treatment significantly attenuated renal fibrosis caused by UUO, and this was paralleled by downregulation of proinflammatory cytokines and decreased inflammatory cell influx. Intriguingly, LCZ696 had stronger effects on renal fibrosis and inflammation than valsartan. UUO-induced oxidative stress triggered mitochondrial destruction and endoplasmic reticulum stress, which resulted in apoptotic cell death; these effects were reversed by LCZ696. Both GS-444217 and LCZ696 hampered the expression of death-associated ASK1/JNK/p38 MAPKs. In H2O2-treated HK-2 cells, LCZ696 and GS-444217 increased cell viability but decreased the production of intracellular reactive oxygen species and MitoSOX and apoptotic cell death. Both agents also deactivated H2O2-stimulated activation of ASK1/JNK/p38 MAPKs. These findings suggest that LCZ696 protects against UUO-induced renal fibrosis by inhibiting ASK1/JNK/p38 MAPK-mediated apoptosis.


Assuntos
Nefropatias , Proteína Quinase 14 Ativada por Mitógeno , Obstrução Ureteral , Humanos , Animais , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno , Neprilisina , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Receptores de Angiotensina , Peróxido de Hidrogênio , MAP Quinase Quinase Quinase 5 , Valsartana/farmacologia , Anti-Hipertensivos , Antivirais , Apoptose
2.
Korean J Intern Med ; 36(6): 1437-1449, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34666433

RESUMO

BACKGROUND/AIMS: Cigarette smoking is an important modifiable risk factor in kidney disease progression. However, the underlying mechanisms for this are lacking. This study aimed to assess whether nicotine (NIC), a major toxic component of cigarette smoking, would exacerbates tacrolimus (TAC)-induced renal injury. METHODS: Sprague-Dawley rats were treated daily with NIC, TAC, or both drugs for 4 weeks. The influence of NIC on TAC-caused renal injury was examined via renal function, histopathology, oxidative stress, mitochondria, endoplasmic reticulum (ER) stress, and programmed cell death (apoptosis and autophagy). RESULTS: Both NIC and TAC significantly impaired renal function and histopathology, while combined NIC and TAC treatment aggravated these parameters beyond the effects of either alone. Increased oxidative stress, ER stress, mitochondrial dysfunction, proinf lammatory and profibrotic cytokine expressions, and programmed cell death from either NIC or TAC were also aggravated by the two combined. CONCLUSION: Our observations suggest that NIC exacerbates chronic TAC nephrotoxicity, implying that smoking cessation may be beneficial for transplant smokers taking TAC.


Assuntos
Nicotina , Tacrolimo , Animais , Apoptose , Rim/fisiologia , Nicotina/toxicidade , Ratos , Ratos Sprague-Dawley , Tacrolimo/toxicidade
3.
Acta Pharmacol Sin ; 42(1): 77-87, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32555441

RESUMO

Reducing immunosuppressant-related complications using conventional drugs is an efficient therapeutic strategy. L-carnitine (LC) has been shown to protect against various types of renal injury. In this study, we investigated the renoprotective effects of LC in a rat model of chronic tacrolimus (TAC) nephropathy. SD rats were injected with TAC (1.5 mg · kg-1 · d-1, sc) for 4 weeks. Renoprotective effects of LC were assessed in terms of renal function, histopathology, oxidative stress, expression of inflammatory and fibrotic cytokines, programmed cell death (pyroptosis, apoptosis, and autophagy), mitochondrial function, and PI3K/AKT/PTEN signaling. Chronic TAC nephropathy was characterized by severe renal dysfunction and typical histological features of chronic nephropathy. At a molecular level, TAC markedly increased the expression of inflammatory and fibrotic cytokines in the kidney, induced oxidative stress, and led to mitochondrial dysfunction and programmed cell death through activation of PI3K/AKT and inhibition of PTEN. Coadministration of LC (200 mg · kg-1 · d-1, ip) caused a prominent improvement in renal function and ameliorated histological changes of kidneys in TAC-treated rats. Furthermore, LC exerted anti-inflammatory and antioxidant effects, prevented mitochondrial dysfunction, and modulated the expression of a series of apoptosis- and autophagy-controlling genes to promote cell survival. Human kidney proximal tubular epithelial cells (HK-2 cells) were treated with TAC (50 µg/mL) in vitro, which induced production of intracellular reactive oxygen species and expression of an array of genes controlling programmed cell death (pyroptosis, apoptosis, and autophagy) through interfering with PI3K/AKT/PTEN signaling. The harmful responses of HK-2 cells to TAC were significantly attenuated by cotreatment with LC and the PI3K inhibitor LY294002 (25 µM). In conclusion, LC treatment protects against chronic TAC nephropathy through interfering the PI3K/AKT/PTEN signaling.


Assuntos
Anti-Inflamatórios/uso terapêutico , Apoptose/efeitos dos fármacos , Carnitina/uso terapêutico , Nefropatias/prevenção & controle , Substâncias Protetoras/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Autofagia/efeitos dos fármacos , Carnitina/química , Linhagem Celular , Cromonas/farmacologia , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/patologia , Masculino , Mitocôndrias/efeitos dos fármacos , Morfolinas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Substâncias Protetoras/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piroptose/efeitos dos fármacos , Ratos Sprague-Dawley , Estereoisomerismo , Tacrolimo
4.
Acta Pharmacol Sin ; 41(12): 1597-1608, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32300244

RESUMO

Tissue kallikrein has protective function against various types of injury. In this study, we investigated whether exogenous pancreatic kininogenase (PK) conferred renoprotection in a rat model of unilateral ureteral obstruction (UUO) and H2O2-treated HK-2 cells in vitro. SD rats were subjected to UUO surgery, then PK (7.2 U/g per day, ip) was administered for 7 or 14 days. After the treatment, rats were euthanized; the obstructed kidneys were harvested for further examination. We found that PK administration significantly attenuated interstitial inflammation and fibrosis, and downregulated the expression of proinflammatory (MCP-1, TLR-2, and OPN) and profibrotic (TGF-ß1 and CTGF) cytokines in obstructed kidney. UUO-induced oxidative stress, closely associated with excessive apoptotic cell death and autophagy via PI3K/AKT/FoxO1a signaling, which were abolished by PK administration. We further showed that PK administration increased the expression of bradykinin receptors 1 and 2 (B1R and B2R) mRNA and the production of NO and cAMP in kidney tissues. Coadministration with either B1R antagonist (des-Arg9-[Leu8]-bradykinin) or B2R antagonist (icatibant) abrogated the renoprotective effects of PK, and reduced the levels of NO and cAMP in obstructed kidney. In H2O2-treated HK-2 cells, addition of PK (6 pg/mL) significantly decreased ROS production, regulated the expression of oxidant and antioxidant enzymes, suppressed the expression of TGF-ß1 and MCP-1, and inhibited cell apoptosis. Our data demonstrate that PK treatment protects against the progression of renal fibrosis in obstructed kidneys.


Assuntos
Fibrose/prevenção & controle , Calicreínas/uso terapêutico , Rim/metabolismo , Pâncreas/enzimologia , Substâncias Protetoras/uso terapêutico , Obstrução Ureteral/complicações , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Fibrose/etiologia , Fibrose/patologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/patologia , Sistema Calicreína-Cinina/efeitos dos fármacos , Rim/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Obstrução Ureteral/patologia
5.
Korean J Intern Med ; 34(5): 1078-1090, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29432674

RESUMO

BACKGROUND/AIMS: Evidence suggests that Shen-Kang (SK), a traditional Chinese herbal medicine, protects against various types of renal injury. In this study, we evaluated whether SK treatment confers renoprotection in a rat model of chronic tacrolimus (TAC) nephropathy. METHODS: Rats were treated daily with TAC (1.5mg/kg, subcutaneously) and SK (450 mg/kg, intravenously) for 4 weeks. The effects of SK on TAC-induced renal injury were assessed by measuring renal function, urine albumin excretion, histopathology, inflammatory cell infiltration, expression of profibrotic (transforming growth factor ß1 [TGF-ß1] and TGF-ß inducible gene-h3 [ßig-h3]) and proinflammatory cytokines, oxidative stress, and apoptotic cell death. RESULTS: Administration of SK preserved glomerular integrity (fractional mesangial area and Wilms tumor 1-positive glomeruli), attenuated tubulointerstitial fibrosis, and reduced the number of ectodermal dysplasia 1-positive cells, and this was paralleled by improved urine albumin excretion and renal dysfunction. At the molecular level, SK treatment suppressed expression of TGF-ß1/Smad2/3, ßig-h3, and proinflammatory cytokines. Oxidative stress and apoptotic cell death were significantly decreased with SK treatment, and apoptosis-related genes were regulated toward cell survival (active caspase-3 and the B-cell lymphoma-2/Bcl2-associated X [Bcl-2/Bax] ratio). CONCLUSION: SK protects against TAC-induced renal injury.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Nefropatias/prevenção & controle , Rim/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Tacrolimo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Citocinas/metabolismo , Citoproteção , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Rim/metabolismo , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Nefropatias/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
6.
Korean J Intern Med ; 30(6): 759-70, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26552451

RESUMO

Despite strict pre- and post-transplantation screening, the incidence of new-onset diabetes after transplantation (NODAT) remains as high as 60%. This complication affects the risk of cardiovascular events and patient and graft survival rates. Thus, reducing the impact of NODAT could improve overall transplant success. The pathogenesis of NODAT is multifactorial, and both modifiable and nonmodifiable risk factors have been implicated. Monitoring and controlling the blood glucose profile, implementing multidisciplinary care, performing lifestyle modifications, using a modified immunosuppressive regimen, administering anti-metabolite agents, and taking a conventional antidiabetic approach may diminish the incidence of NODAT. In addition to these preventive strategies, inhibition of dipeptidyl peptidase-4 (DPP4) by the gliptin family of drugs has recently gained considerable interest as therapy for type 2 diabetes mellitus and NODAT. This review focuses on the role of DPP4 inhibitors and discusses recent literature regarding management of NODAT.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Transplante de Órgãos/efeitos adversos , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/enzimologia , Diabetes Mellitus/etiologia , Humanos , Medição de Risco , Fatores de Risco , Resultado do Tratamento
7.
Nephrol Dial Transplant ; 23(11): 3437-45, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18558621

RESUMO

BACKGROUND AND METHODS: Tissue transglutaminase (tTG) may induce pro-inflammatory cytokines and produce irreversible end-products, thus promoting renal scarring. It has recently been confirmed that the crescent formation in murine experimental crescentic glomerulonephritis (ecGN) has been inhibited by the administration of recombinant uteroglobin (rUG). However, the ability of UG on tTG modulation has not been thoroughly assessed. In this study, we investigated the feasible protective role of UG in murine ecGN through the modulation of tTG and TGF-beta1 expressions. ecGN was induced by the administration of anti-GBM Ab into C57BL/6 mice. RESULTS: Both proteinuria and BUN levels were distinctively lower in rUG-treated mice compared to those of disease control mice. Glomerular injuries such as mesangial proliferation, matrix production and crescent formation were lessened with the rUG treatment, and these findings were parallel with the attenuated expression of tTG and TGF-beta1. tTG and TGF-beta1 were expressed mainly on mesangial areas by the induction of ecGN and rUG treatment markedly attenuated the expressions of these proteins in glomeruli without spatial changes. With the addition of LPS to mesangial cells, the expressions of tTG and TGF-beta1 were up-regulated, whilst the addition of cysteamine, tTG inhibitor, attenuated the expression of tTG and TGF-beta1 as well as the cellular proliferation which was further induced by LPS. CONCLUSION: We demonstrate for the first time that rUG is able to attenuate the renal injury through the modulation of expressions of tTG and TGF-beta1 in ecGN and further suggest a wide range of feasible molecular targets to reduce the severity of human glomerulonephritis.


Assuntos
Glomerulonefrite/metabolismo , Células Mesangiais/metabolismo , Transglutaminases/metabolismo , Uteroglobina/farmacologia , Animais , Anticorpos Anti-Idiotípicos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Glomerulonefrite/induzido quimicamente , Glomerulonefrite/patologia , Humanos , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/farmacologia , Índice de Gravidade de Doença , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA