Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 826954, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371150

RESUMO

Aluminum (Al) toxicity constitutes one of the major limiting factors of plant growth and development on acid soils, which comprises approximately 50% of potentially arable lands worldwide. When suffering Al toxicity, plants reprogram the transcription of genes, which activates physiological and metabolic pathways to deal with the toxicity. Here, we report the role of a NAM, ATAF1, 2 and CUC2 (NAC) transcription factor (TF) in tomato Al tolerance. Among 53 NAC TFs in tomatoes, SlNAC063 was most abundantly expressed in root apex and significantly induced by Al stress. Furthermore, the expression of SlNAC063 was not induced by other metals. Meanwhile, the SlNAC063 protein was localized at the nucleus and has transcriptional activation potentials in yeast. By constructing CRISPR/Cas9 knockout mutants, we found that slnac063 mutants displayed increased sensitivity to Al compared to wild-type plants. However, the mutants accumulated even less Al than wild-type (WT) plants, suggesting that internal tolerance mechanisms but not external exclusion mechanisms are implicated in SlNAC063-mediated Al tolerance in tomatoes. Further comparative RNA-sequencing analysis revealed that only 45 Al-responsive genes were positively regulated by SlNAC063, although the expression of thousands of genes (1,557 upregulated and 636 downregulated) was found to be affected in slnac063 mutants in the absence of Al stress. The kyoto encyclopedia of genes and genomes (KEGG) pathway analysis revealed that SlNAC063-mediated Al-responsive genes were enriched in "phenylpropanoid metabolism," "fatty acid metabolism," and "dicarboxylate metabolism," indicating that SlNAC063 regulates metabolisms in response to Al stress. Quantitative real-time (RT)-PCR analysis showed that the expression of SlAAE3-1 was repressed by SlNAC063 in the absence of Al. However, the expression of SlAAE3-1 was dependent on SlNAC063 in the presence of Al stress. Taken together, our results demonstrate that a NAC TF SlNAC063 is involved in tomato Al tolerance by regulating the expression of genes involved in metabolism, and SlNAC063 is required for Al-induced expression of SlAAE3-1.

2.
Front Plant Sci ; 12: 754147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925406

RESUMO

In response to changing environments, plants regulate gene expression and subsequent metabolism to acclimate and survive. A superfamily of acyl-activating enzymes (AAEs) has been observed in every class of creatures on planet. Some of plant AAE genes have been identified and functionally characterized to be involved in growth, development, biotic, and abiotic stresses via mediating diverse metabolic pathways. However, less information is available about AAEs superfamily in tomato (Solanum lycopersicum), the highest value fruit and vegetable crop globally. In this study, we aimed to identify tomato AAEs superfamily and investigate potential functions with respect to aluminum (Al) stress that represents one of the major factors limiting crop productivity on acid soils worldwide. Fifty-three AAE genes of tomato were identified and named on the basis of phylogenetic relationships between Arabidopsis and tomato. The phylogenetic analysis showed that AAEs could be classified into six clades; however, clade III contains no AAE genes of tomato. Synteny analyses revealed tomato vegetable paralogs and Arabidopsis orthologs. The RNA-seq and quantitative reverse-transcriptase PCR (qRT-PCR) analysis indicated that 9 out of 53 AAEs genes were significantly up- or downregulated by Al stress. Numerous cis-acting elements implicated in biotic and abiotic stresses were detected in the promoter regions of SlAAEs. As the most abundantly expressed gene in root apex and highly induced by Al, there are many potential STOP1 cis-acting elements present in the promoter of SlAAE3-1, and its expression in root apex was specific to Al. Finally, transgenic tobacco lines overexpressing SlAAE3-1 displayed increased tolerance to Al. Altogether, our results pave the way for further studies on the functional characterization of SlAAE genes in tomato with a wish of improvement in tomato crop in the future.

3.
Gigascience ; 10(3)2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33739402

RESUMO

BACKGROUND: The spider Trichonephila antipodiana (Araneidae), commonly known as the batik golden web spider, preys on arthropods with body sizes ranging from ∼2 mm in length to insects larger than itself (>20‒50 mm), indicating its polyphagy and strong dietary detoxification abilities. Although it has been reported that an ancient whole-genome duplication event occurred in spiders, lack of a high-quality genome has limited characterization of this event. RESULTS: We present a chromosome-level T. antipodiana genome constructed on the basis of PacBio and Hi-C sequencing. The assembled genome is 2.29 Gb in size with a scaffold N50 of 172.89 Mb. Hi-C scaffolding assigned 98.5% of the bases to 13 pseudo-chromosomes, and BUSCO completeness analysis revealed that the assembly included 94.8% of the complete arthropod universal single-copy orthologs (n = 1,066). Repetitive elements account for 59.21% of the genome. We predicted 19,001 protein-coding genes, of which 96.78% were supported by transcriptome-based evidence and 96.32% matched protein records in the UniProt database. The genome also shows substantial expansions in several detoxification-associated gene families, including cytochrome P450 mono-oxygenases, carboxyl/cholinesterases, glutathione-S-transferases, and ATP-binding cassette transporters, reflecting the possible genomic basis of polyphagy. Further analysis of the T. antipodiana genome architecture reveals an ancient whole-genome duplication event, based on 2 lines of evidence: (i) large-scale duplications from inter-chromosome synteny analysis and (ii) duplicated clusters of Hox genes. CONCLUSIONS: The high-quality T. antipodiana genome represents a valuable resource for spider research and provides insights into this species' adaptation to the environment.


Assuntos
Aranhas , Animais , Cromossomos , Duplicação Gênica , Genoma , Genômica , Humanos , Aranhas/genética
4.
BMC Genomics ; 21(1): 288, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264854

RESUMO

BACKGROUND: The family of NAC proteins (NAM, ATAF1/2, and CUC2) represent a class of large plant-specific transcription factors. However, identification and functional surveys of NAC genes of tomato (Solanum lycopersicum) remain unstudied, despite the tomato genome being decoded for several years. This study aims to identify the NAC gene family and investigate their potential roles in responding to Al stress. RESULTS: Ninety-three NAC genes were identified and named in accordance with their chromosome location. Phylogenetic analysis found SlNACs are broadly distributed in 5 groups. Gene expression analysis showed that SlNACs had different expression levels in various tissues and at different fruit development stages. Cycloheximide treatment and qRT-PCR analysis indicated that SlNACs may aid regulation of tomato in response to Al stress, 19 of which were significantly up- or down-regulated in roots of tomato following Al stress. CONCLUSION: This work establishes a knowledge base for further studies on biological functions of SlNACs in tomato and will aid in improving agricultural traits of tomato in the future.


Assuntos
Alumínio/administração & dosagem , Perfilação da Expressão Gênica/métodos , Solanum lycopersicum/fisiologia , Fatores de Transcrição/genética , Sequenciamento Completo do Genoma/métodos , Mapeamento Cromossômico , Cicloeximida/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Família Multigênica/efeitos dos fármacos , Filogenia , Proteínas de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Estresse Fisiológico , Fatores de Transcrição/efeitos dos fármacos
5.
Zhongguo Gu Shang ; 31(9): 835-839, 2018 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-30332877

RESUMO

OBJECTIVE: To determine the association of sarcopenia with short-term postoperative function after hip replacement for femoral neck fractures. METHODS: A prospective study of 181 consecutive patients with femoral neck fractures who underwent hip replacement from May 2014 to January 2017 were performed, including 58 males and 123 females aging from 53 to 92 years old. The general conditions were collected before surgery, skeletal muscle index(ASMI), handgrip strength were measured. Clinical outcomes were followed up including postoperative complications, time of on-site, Harris score (postoperative 2 weeks, 3, 6 months), hospitalization costs, and hospital stay. According to handgrip strength and ASMI, the patients were divided into the sarcopina group and the non-sarcopina group; according to the Harris score at the 6-month follow-up, the patients were divided into good prognosis group and poor prognosis group. Univariate analysis and binary logistic regression analysis were used to investigate whether sarcopenia was a risk factor for poor postoperative hip joint surgery. RESULTS: All patients were followed up at 2 weeks, 3 and 6 months, postoperative early complication included wound infection in 16 cases, thrombus of lower extremity veins in 14 cases, no dislocation, prosthetic loosening and prosthesis related infections occurred. Sarcopenia was present in 82 of 181 patients(45%), Compared with non-sarcopenic patients, sarcopenic patients had a higher risk of postoperative complications, longer postoperative hospital stay, more hospital costs and lower harris scores. In Binary logistic analysis revealed that sarcopenia(P=0.08), hemiarthroplasty(P<0.001), diabetes(P=0.016) and infection(P=0.018) were important predictors of unsatisfactory postoperative function. CONCLUSIONS: Sarcopenia is an important predictor of poor postoperative prognosis in patients with femoral neck fractures after hip replacement. The treatment for sarcopenia maybe an important way to protect patients with femoral neck fractures from poor prognosis after hip replacement.


Assuntos
Artroplastia de Quadril , Fraturas do Colo Femoral , Sarcopenia , Idoso , Idoso de 80 Anos ou mais , Feminino , Força da Mão , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Resultado do Tratamento
6.
Plant Physiol ; 172(3): 1679-1690, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27650448

RESUMO

Acyl Activating Enzyme3 (AAE3) was identified to be involved in the catabolism of oxalate, which is critical for seed development and defense against fungal pathogens. However, the role of AAE3 protein in abiotic stress responses is unknown. Here, we investigated the role of rice bean (Vigna umbellata) VuAAE3 in Al tolerance. Recombinant VuAAE3 protein has specific activity against oxalate, with Km = 121 ± 8.2 µm and Vmax of 7.7 ± 0.88 µmol min-1 mg-1 protein, indicating it functions as an oxalyl-CoA synthetase. VuAAE3-GFP localization suggested that this enzyme is a soluble protein with no specific subcellular localization. Quantitative reverse transcription-PCR and VuAAE3 promoter-GUS reporter analysis showed that the expression induction of VuAAE3 is mainly confined to rice bean root tips. Accumulation of oxalate was induced rapidly by Al stress in rice bean root tips, and exogenous application of oxalate resulted in the inhibition of root elongation and VuAAE3 expression induction, suggesting that oxalate accumulation is involved in Al-induced root growth inhibition. Furthermore, overexpression of VuAAE3 in tobacco (Nicotiana tabacum) resulted in the increase of Al tolerance, which was associated with the decrease of oxalate accumulation. In addition, NtMATE and NtALS3 expression showed no difference between transgenic lines and wild-type plants. Taken together, our results suggest that VuAAE3-dependent turnover of oxalate plays a critical role in Al tolerance mechanisms.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Alumínio/toxicidade , Coenzima A Ligases/metabolismo , Oxalatos/metabolismo , Proteínas de Plantas/metabolismo , Vigna/enzimologia , Sequência de Aminoácidos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Clonagem Molecular , Coenzima A Ligases/química , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Especificidade de Órgãos/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Alinhamento de Sequência , Análise de Sequência de Proteína , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Frações Subcelulares/metabolismo , Nicotiana/efeitos dos fármacos , Nicotiana/fisiologia , Vigna/efeitos dos fármacos , Vigna/genética , Vigna/metabolismo
7.
Oncotarget ; 7(1): 266-78, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26497556

RESUMO

MicroRNAs (miRNAs) are dysregulated in many types of malignancies, including human hepatocellular carcinoma (HCC). MiR-107 has been implicated in several types of cancer regulation; however, relatively little is known about miR-107 in human HCC. In the present study, we showed that the overexpression of miR-107 accelerates the tumor progression of HCC in vitro and in vivo through its new target gene, CPEB3. Furthermore, our results demonstrated that CPEB3 is a newly discovered tumor suppressor that acts via the EGFR pathway. Therefore, our study demonstrates that the newly discovered miR-107/CPEB3/EGFR axis plays an important role in HCC progression and might represent a new potential therapeutic target for HCC treatment.


Assuntos
Carcinoma Hepatocelular/genética , Receptores ErbB/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Regiões 3' não Traduzidas/genética , Animais , Western Blotting , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Interferência de RNA , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante Heterólogo , Carga Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA