Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275810

RESUMO

Cadmium (Cd) is one of the major pollutants in the aquatic environment, and it can easily accumulate in aquatic animals and result in toxic effects by changing the metabolism of the body, causing a serious impact on the immune system, reproductive system, and the development of offspring. The clam Meretrix meretrix is one of the commercially important species that is cultivated in large-scale aquaculture in China. To elucidate the underlying molecular mechanisms of Cd2+ in the developmental processes, fertilized eggs and larvae of M. meretrix at different developmental stages were exposed to Cd2+ (27.2 mg L-1 in natural seawater) or just natural seawater without Cd2+ (control), and high-throughput transcriptome sequencing and immunohistochemistry techniques were used to analyze the toxic effects of Cd on larvae at different early developmental stages. The results revealed 31,914 genes were differentially expressed in the different stages of M. meretrix development upon treatment with Cd2+. Ten of these genes were differentially expressed in all stages of development examined, but they comprised only six unigenes (CCO, Ndh, HPX, A2M, STF, and pro-C3), all of which were related to the oxidative stress response. Under Cd exposure, the expression levels of CCO and Ndh were significantly upregulated in D-shaped and pediveliger larvae, while pro-C3 expression was significantly upregulated in the fertilized egg, D-shaped larva, and pediveliger. Moreover, HPX, A2M, and STF expression levels in the fertilized egg and pediveliger larvae were also significantly upregulated. In contrast, CCO, Ndh, HPX, A2M, STF, and pro-C3 expression levels in the postlarva were all downregulated under Cd exposure. Besides the genes with changes in expression identified by the transcriptome, the expression of two other oxidative stress-related genes (MT and Nfr2) was also found to change significantly in the different developmental stages of M. meretrix upon Cd exposure, confirming their roles in combating oxidative stress. Overall, the findings of this study indicated that Cd would interfere with cellular respiration, ion transport, and immune response through inducing oxidative stress, and changes in the expression of oxidative stress-related genes might be an important step for M. meretrix to deal with the adverse effects of Cd at different stages of its development.

2.
Cell Discov ; 6: 58, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32884836

RESUMO

Previous studies have implicated an essential role for UHRF1-mediated histone H3 ubiquitination in recruiting DNMT1 to replication sites for DNA maintenance methylation during S phase of the cell cycle. However, the regulatory mechanism on UHRF1-mediated histone ubiquitination is not clear. Here we present evidence that UHRF1 and USP7 oppositely control ubiquitination of histones H3 and H2B in S phase of the cell cycle and that DNMT1 binds both ubiquitinated H3 and H2B. USP7 knockout markedly increased the levels of ubiquitinated H3 and H2B in S phase, the association of DNMT1 with replication sites and importantly, led to a progressive increase of global DNA methylation shown with increased cell passages. Using DNMT3A/DNMT3B/USP7 triple knockout cells and various DNA methylation analyses, we demonstrated that USP7 knockout led to an overall elevation of DNA methylation levels. Mechanistic study demonstrated that USP7 suppresses DNMT1 recruitment and DNA methylation through its deubiquitinase activity and the interaction with DNMT1. Altogether our study provides evidence that USP7 is a negative regulator of global DNA methylation and that USP7 protects the genome from excessive DNA methylation by attenuating histone ubiquitination-dependent DNMT1 recruitment.

3.
Anal Chem ; 83(17): 6586-92, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21793587

RESUMO

For successful assay development of an aptamer-based biosensor, various design principles and strategies, including a highly selective molecular recognition element and a novel signal transduction mechanism, have to be engineered together. Herein, we report a new type of aptamer-based sensing platform which is based on a triple-helix molecular switch (THMS). The THMS consists of a central, target specific aptamer sequence flanked by two arm segments and a dual-labeled oligonucleotide serving as a signal transduction probe (STP). The STP is doubly labeled with pyrene at the 5'- and 3'-end, respectively, and initially designed as a hairpin-shaped structure, thus, bringing the two pyrenes into spacer proximity. Bindings of two arm segments of the aptamer with the loop sequence of STP enforce the STP to form an "open" configuration. Formation of aptamer/target complex releases the STP, leading to new signal readout. To demonstrate the feasibility and universality of our design, three aptamers which bind to human α-thrombin (Tmb), adenosine triphosphate (ATP), and L-argininamide (L-Arm), respectively, were selected as models. The universality of the approach is achieved by virtue of altering the aptamer sequence without change of the triple-helix structure.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Trifosfato de Adenosina/química , Aptâmeros de Nucleotídeos/metabolismo , Arginina/análogos & derivados , Arginina/química , Humanos , Cinética , Oligonucleotídeos/química , Ligação Proteica , Pirenos/química , Espectrometria de Fluorescência , Termodinâmica , Trombina/química , Trombina/metabolismo
4.
Nucleic Acids Res ; 39(9): 3724-34, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21247876

RESUMO

The stem cell protein Lin28 functions to inhibit the biogenesis of a group of miRNAs but also stimulates the expression of a subset of mRNAs at the post-transcriptional level, the underlying mechanism of which is not yet understood. Here we report the characterization of the molecular interplay between Lin28 and RNA helicase A (RHA) known to play an important role in remodeling ribonucleoprotein particles during translation. We show that reducing Lin28 expression results in decreased RHA association with polysomes while increasing Lin28 expression leads to elevated RHA association. Further, the carboxyl terminus of Lin28 is necessary for interaction with both the amino and carboxyl termini of RHA. Importantly, a carboxyl terminal deletion mutant of Lin28 that retains RNA-binding activity fails to interact with RHA and exhibits dominant-negative effects on Lin28-dependent stimulation of translation. Taken together, these results lead us to suggest that Lin28 may stimulate translation by actively recruiting RHA to polysomes.


Assuntos
RNA Helicases DEAD-box/metabolismo , Proteínas de Neoplasias/metabolismo , Polirribossomos/enzimologia , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular , Humanos , Fator 3 de Transcrição de Octâmero/genética , Polirribossomos/metabolismo , RNA Mensageiro , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Deleção de Sequência
5.
Anal Chem ; 82(15): 6607-12, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20597497

RESUMO

Conformationally constraint nucleic acid probes were usually designed by forming an intramolecular duplex based on Watson-Crick hydrogen bonds. The disadvantages of these approaches are the inflexibility and instability in complex environment of the Watson-Crick-based duplex. We report that this hydrogen bonding pattern can be replaced by metal-ligation between specific metal ions and the natural bases. To demonstrate the feasibility of this principle, two linear oligonucleotides and silver ions were examined as models for DNA hybridization assay and adenosine triphosphate detection. The both nucleic acids contain target binding sequences in the middle and cytosine (C)-rich sequences at the lateral portions. The strong interaction between Ag(+) ions and cytosines forms stable C-Ag(+)-C structures, which promises the oligonucleotides to form conformationally constraint formations. In the presence of its target, interaction between the loop sequences and the target unfolds the C-Ag(+)-C structures, and the corresponding probes unfolding can be detected by a change in their fluorescence emission. We discuss the thermodynamic and kinetic opportunities that are provided by using Ag(+) ion complexes instead of traditional Watson-Crick-based duplex. In particular, the intrinsic feature of the metal-ligation motif facilitates the design of functional nucleic acids probes by independently varying the concentration of Ag(+) ions in the medium.


Assuntos
Sondas de Oligonucleotídeos/química , Prata/química , Ligação de Hidrogênio , Íons , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Oligonucleotídeos/química , Espectrometria de Fluorescência
6.
J Am Chem Soc ; 132(2): 725-36, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-20030359

RESUMO

Despite considerable efforts toward the development of various sophisticated spiropyrans for metal ion sensing, less attention has been paid to organic molecule sensing. One of the major difficulties for detection of organic molecules using a spiropyran is the weak and nonspecific interaction between the spiropyran and the target. Here, we report the synthesis and molecular recognition characterization of two bis-spiropyrans for dipolar molecules and their application to in vivo glutathione (GSH) fluorescent probes. Unlike the mono-spiropyrans, the newly designed bis-spiropyran molecules feature a rigidly maintained molecular cleft and two spiropyran units as binding modules. The molecular recognition is based on multipoint electrostatic interactions and structure complementarity between the opened merocyanine form of the spiropyran and the analyte. It was observed that the spiropyran 1a binds GSH in aqueous solution with high affinity (K = (7.52 +/- 1.83) x 10(4) M(-1)) and shows strong fluorescence emission upon binding. Remarkably, fluorescence output of 1a is not significantly affected by other amino acids and peptides, especially, structurally similar compounds, such as cysteine and homocysteine. Furthermore, fluorescence anisotropy and confocal fluorescent microscopy confirmed that spiropyran 1a is a comparatively good candidate for intracellular delivery and can be accumulated intensively into cells. Thus, 1a can be utilized in vivo as a GSH probe or as a marker to show the level of intracellular GSH.


Assuntos
Benzopiranos/síntese química , Corantes Fluorescentes/síntese química , Glutationa/análise , Indóis/síntese química , Nitrocompostos/síntese química , Benzopiranos/química , Fluorescência , Corantes Fluorescentes/química , Indóis/química , Ligantes , Estrutura Molecular , Nitrocompostos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA