Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
2.
BMC Nephrol ; 25(1): 119, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570749

RESUMO

BACKGROUND: Lupus nephritis (LN) is the most common and severe clinical manifestation of systemic lupus erythematosus (SLE). N6-methyladenosine (m6A) is a reversible RNA modification and has been implicated in various biological processes. However, the roles of m6A regulators in LN are not fully demonstrated. METHODS: We downloaded the kidney tissue transcriptome dataset of LN patients and normal controls from the GEO database and extracted the expression levels of m6A regulators. We constructed and compared Random Forest (RF) and Support Vector Machine (SVM) models, and subsequently selected featured genes to develop nomogram models. The m6A subtypes were identified based on significantly differentially expressed m6A regulators, and the m6A gene subtypes were identified based on m6A-associated differential genes, and the two m6A modification patterns were comprehensively evaluated. RESULTS: We obtained the GSE32591 and GSE112943 datasets from the GEO database, including 78 LN samples and 36 normal control samples. We extracted the expression levels of 20 m6A regulators. By RF analysis we identified 7 characteristic m6A regulators and constructed nomogramh models with these 7 genes. We identified two m6A subtypes based on these seven important m6A regulators, and the immune cell infiltration levels of the two subtype clusters were significantly different. We identified two more m6A gene subtypes based on m6A-associated DEGs. We calculated the m6A scores using the principal component analysis (PCA) algorithm and found that the m6A scores of m6A cluster A and gene cluster A were lower than those of m6A cluster B and gene cluster B. In addition, we found that the levels of inflammatory factors were also significantly different between m6A clusters and gene clusters. CONCLUSION: This study confirms that m6A regulators are involved in the LN process through different modes of action and provide new diagnostic and therapeutic targets for LN.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Nefrite Lúpica/genética , Adenina , Adenosina
3.
J Nanobiotechnology ; 22(1): 15, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38166929

RESUMO

Embryonic stem cell (ESC)-derived epitopes can act as therapeutic tumor vaccines against different types of tumors Jin (Adv Healthc Mater 2023). However, these epitopes have poor immunogenicity and stimulate insufficient CD8+ T cell responses, which motivated us to develop a new method to deliver and enhance their effectiveness. Bacterial outer membrane vesicles (OMVs) can serve as immunoadjuvants and act as a delivery vector for tumor antigens. In the current study, we engineered a new OMV platform for the co-delivery of ESC-derived tumor antigens and immune checkpoint inhibitors (PD-L1 antibody). An engineered Staphylococcal Protein A (SpA) was created to non-specifically bind to anti-PD-L1 antibody. SpyCatcher (SpC) and SpA were fused into the cell outer membrane protein OmpA to capture SpyTag-attached peptides and PD-L1 antibody, respectively. The modified OMV was able to efficiently conjugate with ESC-derived TAAs and PD-L1 antibody (SpC-OMVs + SpT-peptides + anti-PD-L1), increasing the residence time of TAAs in the body. The results showed that the combination therapy of ESC-based TAAs and PD-L1 antibody delivered by OMV had significant inhibitory effects in mouse tumor model. Specifically, it was effective in reducing tumor growth by enhancing IFN-γ-CD8+ T cell responses and increasing the number of CD8+ memory cells and antigen-specific T cells. Overall, the new OMV delivery system is a versatile platform that can enhance the immune responses of ESC-based TAA cancer vaccines.


Assuntos
Vacinas Anticâncer , Neoplasias , Animais , Camundongos , Antígeno B7-H1/metabolismo , Neoplasias/terapia , Anticorpos , Antígenos de Neoplasias , Proteínas de Membrana , Imunidade , Peptídeos , Epitopos
4.
Respir Res ; 25(1): 57, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267973

RESUMO

BACKGROUND: Lymphangioleiomyomatosis (LAM) is a rare disease which is easily misdiagnosed. Vascular endothelial growth factor D (VEGF-D), as the most common biomarker, however, is not so perfect for the diagnosis and severity assessment of LAM. MATERIALS AND METHODS: The isobaric tags for relative and absolute quantitation (iTRAQ)-based method was used to identify a cytoskeleton protein, moesin. 84 patients with LAM, 44 patients with other cystic lung diseases (OCLDs), and 37 healthy control subjects were recruited for collecting blood samples and clinical data. The levels of moesin in serum were evaluated by ELISA. The relationships of moesin with lymphatic involvement, lung function, and treatment decision were explored in patients with LAM. RESULTS: The candidate protein moesin was identified by the proteomics-based bioinformatic analysis. The serum levels of moesin were higher in patients with LAM [219.0 (118.7-260.5) pg/mL] than in patients with OCLDs (125.8 ± 59.9 pg/mL, P < 0.0001) and healthy women [49.6 (35.5-78.9) ng/mL, P < 0.0001]. Moesin had an area under the receiver operator characteristic curve (AUC) of 0.929 for predicting LAM diagnosis compared to healthy women (sensitivity 81.0%, specificity 94.6%). The combination of moesin and VEGF-D made a better prediction in differentiating LAM from OCLDs than moesin or VEGF-D alone. Moreover, elevated levels of moesin were related to lymphatic involvement in patients with LAM. Moesin was found negatively correlated with FEV1%pred, FEV1/FVC, and DLCO%pred (P = 0.0181, r = - 0.3398; P = 0.0067, r = - 0.3863; P = 0.0010, r = - 0.4744). A composite score combining moesin and VEGF-D improved prediction for sirolimus treatment, compared with each biomarker alone. CONCLUSION: Higher levels of moesin in serum may indicate impaired lung function and lymphatic involvement in patients with LAM, suggest a more serious condition, and provide clinical guidance for sirolimus treatment.


Assuntos
Linfangioleiomiomatose , Proteínas dos Microfilamentos , Humanos , Feminino , Linfangioleiomiomatose/diagnóstico , Fator D de Crescimento do Endotélio Vascular , Biomarcadores , Sirolimo
5.
Transl Res ; 263: 53-72, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678757

RESUMO

Neuropathic pain is caused by injury or disease of the somatosensory system, and its course is usually chronic. Several studies have been dedicated to investigating neuropathic pain-related targets; however, little attention has been paid to the persistent alterations that these targets, some of which may be crucial to the pathophysiology of neuropathic pain. The present study aimed to identify potential targets that may play a crucial role in neuropathic pain and validate their long-term impact. Through bioinformatics analysis of RNA sequencing results, we identified Slc9a1 and validated the reduced expression of sodium-hydrogen exchanger 1 (NHE1), the protein that Slc9a1 encodes, in the spinal nerve ligation (SNL) model. Colocalization analysis revealed that NHE1 is primarily co-localized with vesicular glutamate transporter 2-positive neurons. In vitro experiments confirmed that poly(lactic-co-glycolic acid) nanoparticles loaded with siRNA successfully inhibited NHE1 in SH-SY5Y cells, lowered intracellular pH, and increased intracellular calcium concentrations. In vivo experiments showed that sustained suppression of spinal NHE1 expression by siRNA-loaded nanoparticles resulted in delayed hyperalgesia in naïve and SNL model rats, whereas amiloride-induced transient suppression of NHE1 expression yielded no significant changes in pain sensitivity. We identified Slc9a1, which encodes NHE1, as a key gene in neuropathic pain. Utilizing the sustained release properties of nanoparticles enabled us to elucidate the chronic role of decreased NHE1 expression, establishing its significance in the mechanisms of neuropathic pain.


Assuntos
Neuralgia , Neuroblastoma , Ratos , Humanos , Animais , Trocador 1 de Sódio-Hidrogênio/genética , Trocador 1 de Sódio-Hidrogênio/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Glicóis , Preparações de Ação Retardada , RNA Interferente Pequeno/genética
6.
Cell Signal ; 113: 110964, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37956773

RESUMO

BACKGROUND: The effect of fibroblast growth factor 10 (Fgf10) against allergic asthma has remained unclear, despite its importance in lung development and homeostasis maintenance. The purpose of this study was to investigate the protective effect and potential mechanism of Fgf10 on asthma. METHOD: House Dust Mite (HDM)-induced asthma mice were administered recombinant Fgf10 intranasally during activation. Flow cytometry and ELISA were performed to determine type of inflammatory cells and type 2 cytokines levels in bronchoalveolar lavage fluid (BALF). Hematoxylin and eosin (H&E) and periodic acid - Schiff (PAS) staining of lung sections were conducted to evaluate histopathological assessment. Transcriptome profiling was analyzed using RNA-seq, followed by bioinformatics and network analyses to investigate the potential mechanisms of Fgf10 in asthma. RT-qPCR was also used to search for and validate differentially expressed genes in human Peripheral Blood Mononuclear Cells (PBMCs). RESULTS: Exogenous administration of Fgf10 alleviated HDM-induced inflammation and mucus secretion in lung tissues of mice. Fgf10 also significantly inhibited the accumulation of eosinophils and type 2 cytokines (IL-4, IL-5, and IL-13) in BALF. The PI3K/AKT/NF-κB pathway may mediate the suppressive impact of Fgf10 on the asthma inflammation. Through RNA-seq analysis, the intersection of 71 differentially expressed genes (DEGs) was found between HDM challenge and Fgf10 treatment. GO and KEGG enrichment analyses indicated a strong correlation between the DEGs and different immune response. Immune infiltration analysis predicted the differential infiltration of five types of immune cells, such as NK cells, dendritic cells, monocytes and M1 macrophages. PPI analysis determined hub genes such as Irf7, Rsad2, Isg15 and Rtp4. Interestingly, above genes were consistently altered in human PBMCs in asthmatic patients. CONCLUSION: Asthma airway inflammation could be attenuated by Fgf10 in this study, suggesting that it could be a potential therapeutic target.


Assuntos
Asma , NF-kappa B , Animais , Humanos , Camundongos , Asma/tratamento farmacológico , Asma/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Fator 10 de Crescimento de Fibroblastos/farmacologia , Fator 10 de Crescimento de Fibroblastos/uso terapêutico , Fator 10 de Crescimento de Fibroblastos/metabolismo , Inflamação/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Pulmão/metabolismo , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
7.
J Clin Invest ; 133(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37463047

RESUMO

RNA splicing factor SF3B1 is recurrently mutated in various cancers, particularly in hematologic malignancies. We previously reported that coexpression of Sf3b1 mutation and Atm deletion in B cells, but not either lesion alone, leads to the onset of chronic lymphocytic leukemia (CLL) with CLL cells harboring chromosome amplification. However, the exact role of Sf3b1 mutation and Atm deletion in chromosomal instability (CIN) remains unclear. Here, we demonstrated that SF3B1 mutation promotes centromeric R-loop (cen-R-loop) accumulation, leading to increased chromosome oscillation, impaired chromosome segregation, altered spindle architecture, and aneuploidy, which could be alleviated by removal of cen-R-loop and exaggerated by deletion of ATM. Aberrant splicing of key genes involved in R-loop processing underlay augmentation of cen-R-loop, as overexpression of the normal isoform, but not the altered form, mitigated mitotic stress in SF3B1-mutant cells. Our study identifies a critical role of splice variants in linking RNA splicing dysregulation and CIN and highlights cen-R-loop augmentation as a key mechanism for leukemogenesis.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Estruturas R-Loop , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Mutação , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
8.
Blood Cancer Discov ; 4(3): 228-245, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37067905

RESUMO

RNA splicing dysregulation underlies the onset and progression of cancers. In chronic lymphocytic leukemia (CLL), spliceosome mutations leading to aberrant splicing occur in ∼20% of patients. However, the mechanism for splicing defects in spliceosome-unmutated CLL cases remains elusive. Through an integrative transcriptomic and proteomic analysis, we discover that proteins involved in RNA splicing are posttranscriptionally upregulated in CLL cells, resulting in splicing dysregulation. The abundance of splicing complexes is an independent risk factor for poor prognosis. Moreover, increased splicing factor expression is highly correlated with the abundance of METTL3, an RNA methyltransferase that deposits N6-methyladenosine (m6A) on mRNA. METTL3 is essential for cell growth in vitro and in vivo and controls splicing factor protein expression in a methyltransferase-dependent manner through m6A modification-mediated ribosome recycling and decoding. Our results uncover METTL3-mediated m6A modification as a novel regulatory axis in driving splicing dysregulation and contributing to aggressive CLL. SIGNIFICANCE: METTL3 controls widespread splicing factor abundance via translational control of m6A-modified mRNA, contributes to RNA splicing dysregulation and disease progression in CLL, and serves as a potential therapeutic target in aggressive CLL. See related commentary by Janin and Esteller, p. 176. This article is highlighted in the In This Issue feature, p. 171.


Assuntos
Processamento Alternativo , Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Proteômica , Metiltransferases/genética , Metiltransferases/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Ecotoxicol Environ Saf ; 256: 114839, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36989558

RESUMO

Particulate matter (PM) has become the main risk factor for public health, being linked with an increased risk of respiratory diseases. However, the potential mechanisms underlying PM-induced lung injury have not been well elucidated. In this study, we systematically integrated the metabolomics, lipidomics, and transcriptomics data obtained from the human bronchial epithelial cells (HBECs) exposed to PM to reveal metabolic disorders in PM-induced lung injury. We identified 170 differentially expressed metabolites (82 upregulated and 88 downregulated metabolites), 218 differentially expressed lipid metabolites (125 upregulated and 93 downregulated lipid metabolites), and 1417 differentially expressed genes (643 upregulated and 774 downregulated genes). Seven key metabolites (prostaglandin E2, inosinic acid, L-arginine, L-citrulline, L-leucine, adenosine, and adenosine monophosphate), and two main lipid subclasses (triglyceride and phosphatidylcholine) were identified in PM-exposed HBECs. The amino acid metabolism, lipid metabolism, and carbohydrate metabolism were the significantly enriched pathways of identified differentially expressed genes. Then, conjoint analysis of these three omics data and further qRT-PCR validation showed that arachidonic acid metabolism, glycerolipid metabolism, and glutathione metabolism were the key metabolic pathways in PM-exposed HBECs. The knockout of AKR1C3 in arachidonic acid metabolism or GPAT3 in glycerolipid metabolism could significantly inhibit PM-induced inflammatory responses in HBECs. These results revealed the potential metabolic pathways in PM-exposed HBECs and provided a new target to protect from PM-induced airway damage.


Assuntos
Lesão Pulmonar , Material Particulado , Humanos , Material Particulado/efeitos adversos , Ácido Araquidônico/metabolismo , Lesão Pulmonar/induzido quimicamente , Células Epiteliais/metabolismo , Metabolismo dos Lipídeos
10.
bioRxiv ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36798339

RESUMO

Richter's transformation (RT) is a progression of chronic lymphocytic leukemia (CLL) to aggressive lymphoma. MGA ( Max gene associated ), a functional MYC suppressor, is mutated at 3% in CLL and 36% in RT. However, genetic models and molecular mechanisms of MGA deletion driving CLL to RT remain elusive. We established a novel RT mouse model by knockout of Mga in the Sf3b1 / Mdr CLL model via CRISPR-Cas9 to determine the role of Mga in RT. Murine RT cells exhibit mitochondrial aberrations with elevated oxidative phosphorylation (OXPHOS). We identified Nme1 (Nucleoside diphosphate kinase) as a Mga target through RNA sequencing and functional characterization, which drives RT by modulating OXPHOS. As NME1 is also a known MYC target without targetable compounds, we found that concurrent inhibition of MYC and ETC complex II significantly prolongs the survival of RT mice in vivo . Our results suggest that Mga-Nme1 axis drives murine CLL-to-RT transition via modulating OXPHOS, highlighting a novel therapeutic avenue for RT. Statement of Significance: We established a murine RT model through knockout of Mga in an existing CLL model based on co-expression of Sf3b1 -K700E and del ( 13q ). We determined that the MGA/NME1 regulatory axis is essential to the CLL-to-RT transition via modulation of mitochondrial OXPHOS, highlighting this pathway as a novel target for RT treatment.

11.
Adv Healthc Mater ; 12(9): e2202691, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36510117

RESUMO

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) share many cellular and molecular features with cancer cells. Taking advantage of these similarities, stem cells are effective vaccines against cancers in animal models. However, the molecular basis is not well understood, which hinders the development of effective cancer vaccines. Here, prophylactic and therapeutic bladder cancer vaccines composed of allogeneic ESCs and CpG with or without granulocyte macrophage colony stimulating factor are tested. The ESC-based cancer vaccines are able to induce specific antitumor immunity including stimulating cytotoxic CD8+ T cells and memory CD4+ T cells, reducing myeloid-derived suppressor cells, and preventing bladder cancer growth in mouse models. Furthermore, several genes that are overexpressed in both ESCs and tumors are identified. An epitope-based vaccine designed with shared overexpressed proteins induces specific antitumor immunity and reduces bladder cancer growth. Functional epitopes underlying the action of stem cell-based vaccines against bladder cancer are identified and it is confirmed that ESC-based anticancer vaccines have great potential. A systematic approach is provided here to developing novel effective epitope-based cancer vaccines in the future.


Assuntos
Vacinas Anticâncer , Neoplasias da Bexiga Urinária , Camundongos , Animais , Linfócitos T CD8-Positivos , Epitopos , Neoplasias da Bexiga Urinária/terapia , Células-Tronco Embrionárias
12.
J Allergy Clin Immunol Pract ; 11(3): 896-905, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36581073

RESUMO

BACKGROUND: An unmet clinical need exists in the management of treatment-refractory allergic bronchopulmonary aspergillosis (ABPA). Omalizumab has shown promising effects in case series and cohort studies; however, evidence to support its routine clinical use is lacking. OBJECTIVE: The aim of this systematic review and meta-analysis was to evaluate the clinical effectiveness and safety of omalizumab in patients with ABPA. METHODS: We conducted a systematic search across standard databases using specific key words until May 13, 2021. We performed a meta-analysis to compare the effectiveness (exacerbations, oral corticosteroid [OCS] use, lung function, and patient-reported asthma control) and safety of pre- and post-omalizumab treatment. Subgroup analyses were performed for treatment duration and underlying disease. RESULTS: In total, 49 studies (n = 267) were included in the qualitative synthesis and 14 case series (n = 186) in the quantitative meta-analysis. Omalizumab treatment significantly reduced the annualized exacerbation rate compared with pretreatment (mean difference, -2.09 [95% CI, -3.07 to -1.11]; P < .01). There was a reduction in OCS use (risk difference, 0.65 [95% CI, 0.46-0.84]; P < .01), an increase in termination of OCS use (risk difference, 0.53 [95% CI, 0.24-0.82]; P < .01), and a reduction in OCS dose (milligrams per day) (mean difference, -14.62 [95% CI, -19.86 to -9.39]; P < .01) in ABPA patients receiving omalizumab. Omalizumab improved FEV1 % predicted by 11.9% (95% CI, 8.2-15.6; P < .01) and asthma control, and was well-tolerated. CONCLUSIONS: Omalizumab treatment reduced exacerbations and OCS use, improved lung function and asthma control in patients with ABPA, and was well-tolerated. The results highlight the potential role of omalizumab in the treatment of ABPA.


Assuntos
Aspergilose Broncopulmonar Alérgica , Asma , Fibrose Cística , Humanos , Omalizumab/uso terapêutico , Aspergilose Broncopulmonar Alérgica/tratamento farmacológico , Fibrose Cística/tratamento farmacológico , Asma/tratamento farmacológico , Corticosteroides/uso terapêutico
13.
Clin Invest Med ; 45(3): E32-46, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36149054

RESUMO

PURPOSE: To investigate serum leptin levels in patients with type 2 diabetes mellitus (T2DM) and the relationship between leptin levels and T2DM complications and prevalence. METHODS: A total of 355 patients, 282 cases with T2DM and 73 normal controls, were recruited at 1st Medical Centre, Chinese PLA General Hospital (Beijing, China) between November 2013 and July 2014. Levels of serum leptin, biochemical markers and sexual hormones were measured, and clinical characteristics were retrieved through the electronic medical record system. RESULTS: Leptin levels in females were higher than that in males. Leptin levels in T2MD patients were positively correlated with body mass index, percent body fat, triglyceride, cystatin C homocysteine and salivary acid, and negatively correlated with glycosylated serum protein and glycosylated albumin levels. Leptin levels in males were positively correlated with systolic pressure and estradiol, and negatively correlated with testosterone and high density lipoprotein cholesterol. Sex (female) was positively correlated with the duration of disease. Leptin levels in T2DM patients with complications such as hypertension, diabetic nephropathy, diabetic peripheral neuropathy and coronary heart disease were higher than that in patients without such complications. Leptin levels in females with diabetic retinopathy and diabetic macroangiopathy were higher than that in patients without such complications, but there was no difference in males. CONCLUSIONS: Leptin has significant gender differences. Leptin levels are related to body mass index, percent body fat and sex hormone level in T2DM patients and may affect short-term blood glucose control in T2DM patients. Leptin levels are related to complications in patients with T2DM and affect the prevalence rates of complications.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Albuminas , Biomarcadores , Índice de Massa Corporal , HDL-Colesterol , Cistatina C , Diabetes Mellitus Tipo 2/complicações , Estradiol , Feminino , Homocisteína , Humanos , Leptina , Masculino , Poliésteres , Testosterona , Triglicerídeos
15.
Oxid Med Cell Longev ; 2022: 5695005, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571237

RESUMO

MicroRNAs (miRNAs) have been reported in human diseases, in which chronic obstructive pulmonary disease (COPD) is included. Herein, we assessed the role along with the possible mechanisms of miR-150-5p in cigarette smoke- (CS-) induced COPD. The plasma miR-150-5p expression was lower in patients with COPD and acute exacerbation of COPD (AECOPD) and was related to disease diagnosis, disease severity, and lung function. Consistently, exposure to CS for 3 months or 3 days reduced miR-150-5p in the plasma and lung tissues of mice, and CS extract (CSE) inhibited miR-150-5p in human bronchial epithelial cells (HBECs) in a concentration along with time-dependent approach. In vitro, miR-150-5p overexpression decreased the contents of inflammatory factors interleukin- (IL-) 6, IL-8 along with cyclooxygenase-2 (COX-2), and endoplasmic reticulum (ER) stress markers glucose-regulated protein (GRP) 78 and C/-EBP homologous protein (CHOP) and promoted cell migrate. Mechanistically, miR-150-5p could bind with the 3'-untranslated region (UTR) of inositol requiring enzyme 1α (IRE1α), while IRE1α overexpression obliterated the impacts of miR-150-5p. Besides, N-acetyl-cysteine (NAC) reversed CSE-induced miR-150-5p downregulation and its downstream effects. In vivo, miR-150-5p overexpression counteracted CS-triggered IRE1α upregulation, inflammation, and ER stress in the lung tissues of mice. In conclusion, our findings illustrated that ROS-mediated downregulation of miR-150-5p led to CS-induced COPD by inhibiting IRE1α expression, suggesting to serve as a useful biomarker for diagnosing and treating COPD.


Assuntos
Fumar Cigarros , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Regiões 3' não Traduzidas , Animais , Biomarcadores/metabolismo , Fumar Cigarros/efeitos adversos , Regulação para Baixo , Endorribonucleases/metabolismo , Humanos , Inositol , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Serina-Treonina Quinases , Doença Pulmonar Obstrutiva Crônica/metabolismo , Espécies Reativas de Oxigênio/metabolismo
16.
Int J Gen Med ; 15: 207-222, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35023959

RESUMO

PURPOSE: Papillary renal cell carcinoma (PRCC) is a common renal cell carcinoma. Recent studies have reported that ferroptosis is involved in the occurrence and development of tumors. Long non-coding RNAs can be used as independent biomarkers for the diagnosis and prognosis of a variety of tumors. METHODS: Gene expression profile and clinical information of patients with PRCC were obtained from The Cancer Genome Atlas (TCGA) database. Lasso penalized Cox regression and univariate Cox regression analysis were utilized for model construction. The Kaplan-Meier (K-M) and receiver operating characteristic (ROC) curves were plotted to validate the predictive effect of the prognostic signature. Immune cell infiltration and immune function were compared between the high-risk and low-risk groups. Chemotherapy sensitivity analysis was also performed. RESULTS: We constructed a prognostic signature consisting of 15 ferroptosis-related lncRNAs. The K-M curves validated the fine predictive accuracy of the prognostic signature (p < 0.001). The area under the curve (AUC) of the lncRNA signature was 0.930, exhibiting robust prognostic capacity. The high-risk group had a greater degree of immune cell infiltration than the low-risk group. Significant differences in inflammation promotion, parainflammation, and type I IFN response were noted between the low-risk and high-risk groups (p < 0.01). The expression levels of immune checkpoints including CD80, IDO1, and LAG3 were significantly higher in the high-risk group than in the low-risk group (p < 0.05). Chemotherapy sensitivity analysis showed that MNX1-AS1, ZFAS1, MIR4435-2HG, and ADAMTS9-AS1 were significantly correlated with the sensitivity of some chemotherapy drugs (p < 0.05). CONCLUSION: We demonstrated that a ferroptosis-related lncRNA prognostic signature could be a novel biomarker for PRCC.

17.
Chemosphere ; 286(Pt 1): 131614, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34325257

RESUMO

Particulate matter (PM)-induced airway inflammation contributes to the development and exacerbation of chronic airway diseases. Circular RNA (circRNA) is a new class of non-coding RNA that participates in gene regulation in various respiratory diseases, but the regulatory role of circRNA in PM-induced airway inflammation has not been fully elucidated. In this study, we performed the human circRNA microarray to reveal differentially expressed circRNAs in PM-induced human bronchial epithelial cells (HBECs). A total of 176 upregulated and 15 downregulated circRNAs were identified. Of these, a new circRNA termed circTXNRD1 was upregulated by PM exposure in a dose- and time-dependent manner. Knockdown of circTXNRD1 significantly attenuated PM-induced expression of proinflammatory cytokine interleukin 6 (IL-6). CircRNA pull-down, dual-luciferase reporter assay and fluorescence in situ hybridization showed that circTXNRD1 acted as an endogenous sponge to decrease miR-892a levels in HBECs. Downregulation of miR-892a could increase cyclooxygenase-2 (COX-2) expression and eventually promote IL-6 secretion in PM-induced HBECs. Taken together, our findings reveal circTXNRD1 as a novel inflammatory mediator in PM-induced inflammation in HBECs via regulating miR-892a/COX-2 axis. These results provide new insight into the biological mechanism underlying PM-induced inflammation in chronic airway diseases.


Assuntos
MicroRNAs , RNA Circular , Ciclo-Oxigenase 2/genética , Células Epiteliais , Humanos , Hibridização in Situ Fluorescente , Inflamação/induzido quimicamente , Inflamação/genética , MicroRNAs/genética , Material Particulado/toxicidade , RNA/genética
18.
J Clin Invest ; 132(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34882582

RESUMO

Mantle cell lymphoma (MCL) is a phenotypically and genetically heterogeneous malignancy in which the genetic alterations determining clinical indications are not fully understood. Here, we performed a comprehensive whole-exome sequencing analysis of 152 primary samples derived from 134 MCL patients, including longitudinal samples from 16 patients and matched RNA-Seq data from 48 samples. We classified MCL into 4 robust clusters (C1-C4). C1 featured mutated immunoglobulin heavy variable (IGHV), CCND1 mutation, amp(11q13), and active B cell receptor (BCR) signaling. C2 was enriched with del(11q)/ATM mutations and upregulation of NF-κB and DNA repair pathways. C3 was characterized by mutations in SP140, NOTCH1, and NSD2, with downregulation of BCR signaling and MYC targets. C4 harbored del(17p)/TP53 mutations, del(13q), and del(9p), and active MYC pathway and hyperproliferation signatures. Patients in these 4 clusters had distinct outcomes (5-year overall survival [OS] rates for C1-C4 were 100%, 56.7%, 48.7%, and 14.2%, respectively). We also inferred the temporal order of genetic events and studied clonal evolution of 16 patients before treatment and at progression/relapse. Eleven of these samples showed drastic clonal evolution that was associated with inferior survival, while the other samples showed modest or no evolution. Our study thus identifies genetic subsets that clinically define this malignancy and delineates clonal evolution patterns and their impact on clinical outcomes.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Linfoma de Célula do Manto , Proteínas de Neoplasias , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Intervalo Livre de Doença , Feminino , Humanos , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/mortalidade , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Taxa de Sobrevida
19.
Clin Transl Med ; 11(11): e579, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34841705

RESUMO

Increasing evidence supports a central role of the immune system in lung diseases. Understanding how immunological alterations between lung diseases provide opportunities for immunotherapy. Exhausted T cells play a key role of immune suppression in lung cancer and chronic obstructive pulmonary disease was proved in our previous study. The present study aims to furthermore define molecular landscapes and heterogeneity of systemic immune cell target proteomic and transcriptomic profiles and interactions between circulating immune cells and lung residential cells in various lung diseases. We firstly measured target proteomic profiles of circulating immune cells from healthy volunteers and patients with stable pneumonia, stable asthma, acute asthma, acute exacerbation of chronic obstructive pulmonary disease, chronic obstructive pulmonary disease and lung cancer, using single-cell analysis by cytometry by time-of-flight with 42 antibodies. The nine immune cells landscape was mapped among those respiratory system diseases, including CD4+ T cells, CD8+ T cells, dendritic cells, B cells, eosinophil, γδT cells, monocytes, neutrophil and natural killer cells. The double-negative T cells and exhausted CD4+ central memory T cells subset were identified in patients with acute pneumonia. This T subset expressed higher levels of T-cell immunoglobulin and mucin domain-containing protein 3 (Tim3) and T-cell immunoreceptor with Ig and ITIM domains (TIGIT) in patients with acute pneumonia and stable pneumonia. Biological processes and pathways of immune cells including immune response activation, regulation of cell cycle and pathways in cancer in peripheral blood immune cells were defined by bulk RNA sequencing (RNA-seq). The heterogeneity among immune cells including CD4+ , CD8+ T cells and NK T cells by single immune cell RNA-seq with significant difference was found by single-cell sequencing. The effect of interstitial telocytes on the immune cell types and immune function was finally studied and the expressions of CD8a and chemokine C-C motif receptor 7 (CCR7) were increased significantly in co-cultured groups. Our data indicate that proteomic and transcriptomic profiles and heterogeneity of circulating immune cells provides new insights for understanding new molecular mechanisms of immune cell function, interaction and modulation as a source to identify and develop biomarkers and targets for lung diseases.


Assuntos
Censos , Células Matadoras Naturais/imunologia , Pneumopatias/metabolismo , Adulto , Feminino , Humanos , Células Matadoras Naturais/metabolismo , Pneumopatias/fisiopatologia , Masculino , Pessoa de Meia-Idade
20.
Drug Des Devel Ther ; 15: 4585-4601, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34785888

RESUMO

PURPOSE: This study aimed to explore the underlying mechanisms of Shenyankangfu tablet (SYKFT) in the treatment of glomerulonephritis (GN) based on network pharmacology, machine learning, molecular docking, and experimental validation. METHODS: The active ingredients and potential targets of SYKFT were obtained through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, the targets of GN were obtained through GeneCards, etc. Perl and Cytoscape were used to construct an herb-active ingredient-target network. Then, the clusterProfiler package of R was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. We also used the STRING platform and Cytoscape to construct a protein-protein interaction (PPI) network, as well as the SwissTargetPrediction server to predict the target protein of the core active ingredient based on machine-learning model. Molecular-docking analysis was further performed using AutoDock Vina and Pymol. Finally, we verified the effect of SYKFT on GN in vivo. RESULTS: A total of 154 active ingredients and 255 targets in SYKFT were screened, and 135 targets were identified to be related to GN. GO enrichment analysis indicated that biological processes were primarily associated with oxidative stress and cell proliferation. KEGG pathway analysis showed that these targets were involved mostly in infection-related and GN-related pathways. PPI network analysis identified 13 core targets of SYKFT. Results of machine-learning model suggested that STAT3 and AKT1 may be the key target. Results of molecular docking suggested that the main active components of SYKFT can be combined with various target proteins. In vivo experiments confirmed that SYKFT may alleviate renal pathological injury by regulating core genes, thereby reducing urinary protein. CONCLUSION: This study demonstrated for the first time the multicomponent, multitarget, and multipathway characteristics of SYKFT for GN treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Glomerulonefrite/tratamento farmacológico , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Glomerulonefrite/metabolismo , Glomerulonefrite/patologia , Humanos , Medicina Tradicional Chinesa , Estresse Oxidativo/efeitos dos fármacos , Comprimidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA