Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(7): 10766-10784, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38200199

RESUMO

Currently, there is limited understanding of the structures and variabilities of bacterial communities in oil-contaminated soil within shale gas development. The Changning shale gas well site in Sichuan province was focused, and high-throughput sequencing was used to investigate the structures of bacterial communities and functions of bacteria in soil with different degrees of oil pollution. Furthermore, the influences of the environmental factors including pH, moisture content, organic matter, total nitrogen, total phosphorus, oil, and the biological toxicity of the soil on the structures of bacterial communities were analyzed. The results revealed that Proteobacteria and Firmicutes predominated in the oil-contaminated soil. α-Proteobacteria and γ-Proteobacteria were the main classes under the Proteobacteria phylum. Bacilli was the main class in the Firmicutes phylum. Notably, more bacteria were only found in CN-5 which was the soil near the storage pond for abandoned drilling mud, including Marinobacter, Balneola, Novispirillum, Castellaniella, and Alishewanella. These bacteria exhibited resilience to higher toxicity and demonstrated proficiency in oil degradation. The functions including carbohydrate transport and metabolism, energy metabolism, replication, recombination and repair replication, signal transduction mechanisms, and amino acid transport and metabolism responded differently to varying concentrations of oil. The disparities in bacterial genus composition across samples stemmed from a complex play of pH, moisture content, organic matter, total nitrogen, total phosphorus, oil concentration, and biological toxicity. Notably, bacterial richness correlated positively with moisture content, while bacterial diversity showed a significant positive correlation with pH. Acidobacteria exhibited a significant positive correlation with moisture content. Litorivivens and Luteimonas displayed a significant negative correlation with pH, while Rhizobium exhibited a significant negative correlation with moisture content. Pseudomonas, Proteiniphilum, and Halomonas exhibited positive correlations not only with organic matter but also with oil concentration. Total nitrogen exhibited a significant positive correlation with Taonella and Sideroxydans. On the other hand, total phosphorus showed a significant negative correlation with Sphingomonas. Furthermore, Sphingomonas, Gp6, and Ramlibacter displayed significant negative correlations with biological toxicity. The differential functions exhibited no significant correlation with environmental factors but displayed a significant positive correlation with the Proteobacteria phylum. Aridibacter demonstrated a significant positive correlation with cell motility and cellular processes and signaling. Conversely, Pseudomonas, Proteiniphilum, and Halomonas were negatively correlated with differential functions, particularly in amino acid metabolism, carbohydrate metabolism, and membrane transport. Compared with previous research, more factors were considered in this research when studying structural changes in bacterial communities, such as physicochemical properties and biological toxicity of soil. In addition, the correlations of differential functions of communities with environmental factors, bacterial phyla, and genera were investigated.


Assuntos
Gás Natural , Campos de Petróleo e Gás , Bactérias/metabolismo , Proteobactérias , Firmicutes , Solo/química , Acidobacteria , Minerais/metabolismo , Fósforo/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Nitrogênio/análise , Aminoácidos/metabolismo , Microbiologia do Solo
2.
Org Lett ; 25(49): 8866-8871, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38059777

RESUMO

We report the first example of a regioselectivity switch in the hydroheteroarylation of vinylarenes with electron-rich heteroarenes, including benzofurans, benzothiophenes, and indoles, using an expedient ligand-controlled strategy. In the presence of NaOtBu, Ni(IMesMe)[P(OEt)3]Br2 yields C2-alkylated heteroarenes with high branched selectivity, whereas the use of Ni(IPr*OMe)[P(OEt)3]Br2 favors the formation of the corresponding linear products. This robust method also provides easy access to a range of C2-alkylated electron-rich heteroarenes without employing directing groups.

3.
Appl Microbiol Biotechnol ; 107(14): 4553-4566, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37272940

RESUMO

Due to the complex composition of lichenan, lichenase alone cannot always hydrolyze it efficiently. Carbohydrate-binding modules (CBMs) and lytic polysaccharide monooxygenases (LPMOs) have been confirmed to increase the hydrolysis efficiency of lichenases. However, their practical application was hampered by the complex and costly preparation procedure, as well as the poor stability of LPMOs. Herein, we discovered a novel and stable auxiliary protein named SCE to boost the hydrolysis efficiency. SCE was composed of SpyCatcher (SC) and elastin-like polypeptides (ELPs) and could be easily and cheaply prepared. Under the optimal conditions, the boosting degree for SCE/lichenase was 1.45, and the reducing sugar yield improved by nearly 45%. The results of high-performance liquid chromatography (HPLC) indicated that SCE had no influence on the hydrolysis pattern of lichenase. Through the experimental verification and bioinformatics analysis, we proposed the role of SCE in promoting the interaction between the lichenase and substrates. These findings endow SC with a novel function in binding to insoluble lichenan, paving the way for biomass degradation and biorefinery. KEY POINTS: • A novel self-purification auxiliary protein that could boost the hydrolysis efficiency of lichenase has been identified. • The protein is highly produced, simple to prepare, well stable, and does not require any external electron donor. • The novel function of SpyCatcher in binding to insoluble lichenan was first demonstrated.


Assuntos
Glucanos , Glicosídeo Hidrolases , Biomassa , Glucanos/química , Glicosídeo Hidrolases/metabolismo , Polissacarídeos
4.
J Ethnopharmacol ; 317: 116747, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37311500

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ramulus Cinnamomi, the dried twig of Cinnamomum cassia (L.) J.Presl., is a traditional Chinese medicine (TCM) with anti-inflammatory effects. The medicinal functions of Ramulus Cinnamomi essential oil (RCEO) have been confirmed, although the potential mechanisms by which RCEO exerts its anti-inflammatory effects have not been fully elucidated. AIM OF THE STUDY: To investigate whether N-acylethanolamine acid amidase (NAAA) mediates the anti-inflammatory effects of RCEO. MATERIALS AND METHODS: RCEO was extracted by steam distillation of Ramulus Cinnamomi, and NAAA activity was detected using HEK293 cells overexpressing NAAA. N-Palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA), both of which are NAAA endogenous substrates, were detected by liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). The anti-inflammatory effects of RCEO were analyzed in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and the cell viability was measured with a Cell Counting Kit-8 (CCK-8) kit. The nitric oxide (NO) in the cell supernatant was measured using the Griess method. The level of tumor necrosis factor-α (TNF-α) in the RAW264.7 cell supernatant was determined using an enzyme-linked immunosorbent assay (ELISA) kit. The chemical composition of RCEO was assessed by gas chromatography-mass spectroscopy (GC-MS). The molecular docking study for (E)-cinnamaldehyde and NAAA was performed by using Discovery Studio 2019 software (DS2019). RESULTS: We established a cell model for evaluating NAAA activity, and we found that RCEO inhibited the NAAA activity with an IC50 of 5.64 ± 0.62 µg/mL. RCEO significantly elevated PEA and OEA levels in NAAA-overexpressing HEK293 cells, suggesting that RCEO might prevent the degradation of cellular PEA and OEA by inhibiting the NAAA activity in NAAA-overexpressing HEK293 cells. In addition, RCEO also decreased NO and TNF-α cytokines in lipopolysaccharide (LPS)-stimulated macrophages. Interestingly, the GC-MS assay revealed that more than 93 components were identified in RCEO, of which (E)-cinnamaldehyde accounted for 64.88%. Further experiments showed that (E)-cinnamaldehyde and O-methoxycinnamaldehyde inhibited NAAA activity with an IC50 of 3.21 ± 0.03 and 9.62 ± 0.30 µg/mL, respectively, which may represent key components of RCEO that inhibit NAAA activity. Meanwhile, docking assays revealed that (E)-cinnamaldehyde occupies the catalytic cavity of NAAA and engages in a hydrogen bond interaction with the TRP181 and hydrophobic-related interactions with LEU152 of human NAAA. CONCLUSIONS: RCEO showed anti-inflammatory effects by inhibiting NAAA activity and elevating cellular PEA and OEA levels in NAAA-overexpressing HEK293 cells. (E)-cinnamaldehyde and O-methoxycinnamaldehyde, two components in RCEO, were identified as the main contributors of the anti-inflammatory effects of RCEO by modulating cellular PEA levels through NAAA inhibition.


Assuntos
Lipopolissacarídeos , Óleos Voláteis , Humanos , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa , Óleos Voláteis/farmacologia , Espectrometria de Massas em Tandem , Células HEK293 , Simulação de Acoplamento Molecular , Anti-Inflamatórios/farmacologia , Amidoidrolases/metabolismo
5.
Int J Biol Macromol ; 225: 149-161, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403765

RESUMO

Enzymatic degradation of polyethylene terephthalate (PET) suffered from challenges such as complex and costly enzyme preparation, difficult access to PET substrates, poor reusability of free enzymes and sometimes MHET inhibitions. Herein, we propose an "all-in-one" strategy to address these issues with a well-designed elastin-like polypeptides (ELPs) tag. The preparation of the ELPs-tagged cutinase (ET-C) was efficient and easy to scale up by centrifugation, with an activity recovery of 57.55 % and a yield of 160 mg/L. Besides, the activity of the ET-C was 1.3 and 1.66-fold higher in degrading PET micro- and macro-plastics compared to wild-type cutinase. The self-immobilized cutinase (ET-C@SiO2) obtained by the ELPs-mediated biosilicification exhibited high loading capacity, activity, and thermostability and maintained 77.65 % of the original activity after 10 reuses. Interestingly, the product of the ET-C was TPA, whereas the wild-type was TPA and MHET. This is a simple way to release the intermediates inhibition compared with the existing methods. Our results demonstrated the feasibility of the versatile ELPs tag, which will pave an alternative economic way for scalable PET biodegradation.


Assuntos
Polietilenotereftalatos , Dióxido de Silício , Polietilenotereftalatos/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Plásticos , Peptídeos
6.
Org Lett ; 24(48): 8875-8879, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36441568

RESUMO

We herein describe an accessible ligand-controlled nickel-catalyzed tandem isomerization/regiodivergent hydroheteroarylation of α-alkenes with a series of heteroarenes, wherein the NHC ligand of heteroleptic Ni(II) complexes of the type Ni(NHC)[P(OEt)3]Br2 displayed significant effects on regulation. In the presence of NaOtBu, Ni(IMes)[P(OEt)3]Br2 enables C═C bond isomerization of α-alkenes over up to four sp3 carbon atoms to afford branched products, while Ni(IPr*OMe)[P(OEt)3]Br2 greatly deactivates α-alkene isomerization and favors the formation of linear products.

7.
Mar Drugs ; 18(4)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326173

RESUMO

Palmitoylethanolamide (PEA) is an endogenous lipid mediator with powerful anti-inflammatory and analgesic functions. PEA can be hydrolyzed by a lysosomal enzyme N-acylethanolamine acid amidase (NAAA), which is highly expressed in macrophages and other immune cells. The pharmacological inhibition of NAAA activity is a potential therapeutic strategy for inflammation-related diseases. Fucoxanthinol (FXOH) is a marine carotenoid from brown seaweeds with various beneficial effects. However, the anti-inflammatory effects and mechanism of action of FXOH in lipopolysaccharide (LPS)-stimulated macrophages remain unclear. This study aimed to explore the role of FXOH in the NAAA-PEA pathway and the anti-inflammatory effects based on this mechanism. In vitro results showed that FXOH can directly bind to the active site of NAAA protein and specifically inhibit the activity of NAAA enzyme. In an LPS-induced inflammatory model in macrophages, FXOH pretreatment significantly reversed the LPS-induced downregulation of PEA levels. FXOH also substantially attenuated the mRNA expression of inflammatory factors, including inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), and markedly reduced the production of TNF-α, IL-6, IL-1ß, and nitric oxide (NO). Moreover, the inhibitory effect of FXOH on NO induction was significantly abolished by the peroxisome proliferator-activated receptor α (PPAR-α) inhibitor GW6471. All these findings demonstrated that FXOH can prevent LPS-induced inflammation in macrophages, and its mechanisms may be associated with the regulation of the NAAA-PEA-PPAR-α pathway.


Assuntos
Amidas/metabolismo , Amidoidrolases/metabolismo , Anti-Inflamatórios/farmacologia , Inibidores Enzimáticos/farmacologia , Etanolaminas/metabolismo , Inflamação/enzimologia , Ácidos Palmíticos/metabolismo , beta Caroteno/análogos & derivados , Animais , Citocinas/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Camundongos , Óxido Nítrico/metabolismo , Oxazóis , PPAR alfa/antagonistas & inibidores , PPAR alfa/metabolismo , Células RAW 264.7 , Tirosina/análogos & derivados , beta Caroteno/química , beta Caroteno/farmacologia
8.
Bioorg Med Chem ; 27(20): 115069, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31492533

RESUMO

A novel series of fatty acid synthase (FAS) inhibitors with D-(-)-pantolactone moiety and potential utility for the treatment of obesity were designed, synthesized and characterized, in which the structure of compound 3k was further confirmed by single X-ray diffraction. The mouse FAS inhibitory activity of synthesized compounds was evaluated. Major synthesized compounds (except 3g, 3i, 3k, 3l, and 3n) exhibited moderate FAS inhibitory properties with IC50 values in the range of 13.68 ±â€¯1.52-33.19 ±â€¯1.39 µM, reference inhibitor C75 has IC50 value of 13.86 ±â€¯2.79 µM. Eight compounds (3c, 3d, 3e, 3f, 3j, 3m, 3q and 3r) also displayed inhibitory effect on lipid accumulation in human HepG2 cells. Additionally, the molecular docking study revealed that compound 3m having good inhibition activity against FAS and lipid accumulation also showed promising binding affinities with hFAS, while its binding model with hFAS (PDB ID: 4PIV) was different from that of reference compound C75.


Assuntos
4-Butirolactona/análogos & derivados , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Receptor fas/antagonistas & inibidores , 4-Butirolactona/síntese química , 4-Butirolactona/química , 4-Butirolactona/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células Hep G2 , Humanos , Lipídeos/antagonistas & inibidores , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Receptor fas/metabolismo
9.
J BUON ; 24(2): 844-852, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31128045

RESUMO

PURPOSE: To determine whether low-intensity pulsed ultrasound (US) using microbubbles (MB) can temporarily promote regional blood flow in the tumor and increase the delivery of doxorubicin (ad). METHODS: We randomly divided 66 tumor-bearing rabbits into 6 groups (n=11/group). The 6 groups were as follows: doxorubicin and ultrasound combined with microbubble treatment group (Ad-US-MB treatment group), US-MB treatment group, US treatment group, MB treatment group, doxorubicin treatment group (Ad-treatment group), and control group. The animals were intravenously injected with doxorubicin hydrochloride; next, the tumors in the Ad-US-MB treatment group were subjected to low-intensity ultrasound with microbubbles for 10 min. Contrast-enhanced ultrasound (CEUS) imaging of tumor tissues was performed before and after the intervention. Next, we randomly selected 8 rabbits/group, which were euthanized immediately after treatment. The remaining rabbits were reared and underwent the intervention every 7 days. RESULTS: Tumor perfusion increased immediately in the Ad-US-MB treatment group (p<0.01). Unlike the Ad treatment group, the Ad-US-MB treatment group showed high levels of doxorubicin in the tumor samples (p<0.05). Immunofluorescent staining showed high levels of doxorubicin mainly around the blood vessels; in addition, doxorubicin was observed in other areas in the Ad-US-MB treatment group. Inhibition of tumor growth was observed in the Ad-US-MB treatment group. CONCLUSIONS: Low-intensity ultrasound combined with microbubbles and chemotherapy can alter the tumor microenvironment and temporarily increase the regional blood flow to the tumor.


Assuntos
Doxorrubicina/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Ondas Ultrassônicas/efeitos adversos , Animais , Terapia Combinada , Meios de Contraste/farmacologia , Modelos Animais de Doenças , Humanos , Microbolhas/efeitos adversos , Neoplasias/patologia , Coelhos , Fluxo Sanguíneo Regional/efeitos dos fármacos , Ultrassonografia
10.
Int J Biol Macromol ; 134: 1156-1169, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31128196

RESUMO

Bioinspired silicification is an attractive route for achieving unique silica nanocomposites. Herein, a novel, facile and inexpensive route for biosilica synthesis is developed using the stimuli-responsive elastin-like polypeptide (ELP). The ELP is precisely tailored to a silica-mineralizing peptide by programming it with lysine residues. The resulting cationic ELP[KV8F-40] is purified in ultrahigh yield using a chromatography-free ITC purification technique based on thermal-responsive property. Excitingly, the specific activity of ELP is 40-fold higher than that of silaffin. Besides, efficient and strong entrapment of ELP is achieved with over 98% of immobilization yield and less than 2% of leakage. These imply that cationic ELP may be used as a bifunctional tag (purification and immobilization) for fusion protein. An enzyme (xylanase) is therefore chosen to genetically fuse to ELP. The ELP-fused xylanase is purified by ELP with high purity (~98%) and enables the rapid (within minutes) self-immobilization. The immobilization yield was greater than 95%, and the immobilized xylanases hardly leaked from the silica matrix, demonstrating high efficiency of the self-immobilization process. The strategy developed here may provide a new opportunity for fabricating functional silica nanocomposites in a feasible and inexpensive pathway, which will have great potentials in the field of biotechnology.


Assuntos
Biomimética , Enzimas Imobilizadas , Nanocompostos , Peptídeos , Dióxido de Silício , Biomimética/métodos , Nanocompostos/química , Nanocompostos/ultraestrutura , Peptídeos/química , Peptídeos/genética , Engenharia de Proteínas , Estabilidade Proteica , Dióxido de Silício/química
11.
Ultrasound Q ; 35(2): 103-109, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30169494

RESUMO

The aims of this study were to determine the change of interstitial fluid pressure (IFP) after therapy using pulsed low-frequency ultrasound combined with microbubbles and to determine the change of doxorubicin penetration in VX2 tumor. In this study, all 48 tumor-bearing rabbits were divided randomly into 6 groups (n = 8 per group). These 6 groups include doxorubicin therapy together with ultrasound combined with microbubble treatment group (Ad-US-MB treatment group), US-MB treatment group, US treatment group, MB treatment group, doxorubicin treatment group (Ad treatment group), and blank control group. The animals were intravenously injected with doxorubicin hydrochloride, and then the tumors of the animals were disposed by low-intensity ultrasound and mirobubbles for 10 minutes. The IFP of tumor tissues in rabbits was detected before and after intervention. Rabbits in each group were sacrificed immediately after treatment. The concentration and the distribution of doxorubicin were detected. The tumor IFP was significantly lower than that before treatment in the Ad-US-MB treatment and US-MB treatment groups (P = 0.01, P = 0.013). Ultrasound combined with microbubble increased the concentration of doxorubicin in the sample of the Ad-US-MB treatment group compared with the Ad treatment group (P < 0.05). In immunofluorescent staining section, high concentrations of doxorubicin were observed mainly around the blood vessels, and some were even discovered at a farther area in the Ad-US-MB treatment group. The pulsed low-frequency ultrasound combined with the microbubbles enhances the vascular clearance of particles into the tumor interstitium by reducing IFP.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Líquido Extracelular , Microbolhas , Neoplasias/tratamento farmacológico , Ondas Ultrassônicas , Animais , Modelos Animais de Doenças , Coelhos
12.
Enzyme Microb Technol ; 115: 29-36, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29859600

RESUMO

We generated a bifunctional enzyme chimera containing the xylanase and lichenase coupled with SpyTag between them. Meanwhile, we generated another chimera containing SpyCatcher and elastin-like polypeptides (ELPs). As ELPs could bond to the xylanase-lichenase chimera through SpyTag/SpyCatcher spontaneous reaction in mild condition, which would lead to the formation of a 3-arm star multifunctional chimera. We purified the xylanase-lichenase by the non-chromatographic purification tag of ELPs. Interestingly, 57.5% of the xylanase and 47.2% of the lichenase in chimera self-assembled into insoluble active particles during the process of purification, which could serve as immobilized bifunctional enzymes. Notably, the immobilized chimera xylanase-lichenase showed a remarkable stability even after 10 reaction cycles, which retained around 56% (lichenase) and 44% (xylanase) of their initial activities, respectively. Moreover, the enhanced thermostability of the immobilized enzymes was also achieved. After incubating at 60 °C for 60 min, the residual activity of the immobilized lichenase was 35%, while the free one was only 24%. Unexpectedly, the free xylanase almost lost its activity when incubated at 55 °C for 60 min, whereas the immobilized xylanase retained 10% of its activity. However, the catalytic efficiency (kcat/Km) of the free xylanase was 1.7-fold higher than the immobilized one, while the free lichenase was 1.1-fold higher than the immobilized one. This is among the first known reports that two enzymes are purified and immobilized in one-step. This novel strategy is easy to scale up and may meet the demands of biofuel industry. It would have great potentials in other biotechnological fields, such as the multifunctional biomaterials systems.


Assuntos
Endo-1,4-beta-Xilanases/isolamento & purificação , Enzimas Imobilizadas/metabolismo , Glicosídeo Hidrolases/isolamento & purificação , Proteínas Recombinantes de Fusão/isolamento & purificação , Catálise , Elastina/química , Elastina/metabolismo , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Estabilidade Enzimática , Enzimas Imobilizadas/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Peptídeos/química , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA