Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37917000

RESUMO

Two novel plant growth-promoting, rod-shaped, Gram-positive and non-motile rhizobacteria, W1NT and W2RT, were isolated from wetland plants Festuca elata and Nymphoides peltatum, respectively, in China. The results of the 16S rRNA sequence alignment analysis showed that they were related to Microbacterium, with the highest similarity to Microbacterium ketosireducens (98.7 %) and Microbacterium laevaniformans (98.5 %) for strain W1NT, and to Microbacterium terricola (98.1 %) and Microbacterium marinum (98.0 %) for strain W2RT. Phylogenetic analyses based on 16S rRNA gene sequences and 92 conserved concatenated proteins suggested that the two strains belong to the genus Microbacterium and were placed in two separate novel phylogenetic clades. The genome sizes of the two strains were 3.2 and 3.7 Mb, and the G+C contents were 71.7 and 68.5 mol%, respectively. The comparative genome results showed that the average nucleotide identity values between W1NT and W2RT and other species ranged from 73.5 to 83.6 %, and the digital DNA-DNA hybridization values ranged from 19.7 to 26.8 %. These two strains show physiological and biochemical features that differ from those of closely related species. Rhamnose, galactose and glucose were present in the characteristic sugar fractions of strains W1NT and W2RT. The peptidoglycan of strains W1NT and W2RT contained the amino acids ornithine, alanine and aspartic acid. C15 : 0 anteiso, C17 : 0 anteiso and C16 : 0 iso were the predominant cellular fatty acids in W1NT and W2RT. Phosphatidylglycerol and diphosphatidylglycerol are major polar lipid components. Strain W1NT not only formed bacterial biofilms but also had the ability to solubilize phosphorus and produce indole-3-acetic acid. Strain W2RT had siderophore-producing and lignin-degrading properties. Based on their genetic and phenotypic characteristics, strains W1NT and W2RT were classified as novel bacteria in the genus Microbacterium and designated as Microbacterium festucae sp. nov. (type strain W1NT=ACCC 61807T=GDMCC 1.2966T=JCM 35339T) and Microbacterium nymphoidis sp. nov. (type strain W2RT=ACCC 61808T=GDMCC 1.2967T=JCM 35340T).


Assuntos
Actinomycetales , Ácidos Graxos , Composição de Bases , Ácidos Graxos/química , Microbacterium , Filogenia , RNA Ribossômico 16S/genética , Áreas Alagadas , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , China , Actinomycetales/genética
2.
Front Immunol ; 12: 692733, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367151

RESUMO

Background: The calcium-binding protein S100A4 demonstrates important regulatory roles in many biological processes including tumorigenesis and inflammatory disorders such as allergy. However, the specific mechanism of the contribution of S100A4 to allergic diseases awaits further clarification. Objective: To address the effect of S100A4 on the regulation of mast cell activation and its impact on allergy. Methods: Bone marrow-derived cultured mast cells (BMMCs) were derived from wild-type (WT) or S100A4-/- mice for in vitro investigation. WT and S100A4-/- mice were induced to develop a passive cutaneous anaphylaxis (PCA) model, a passive systemic anaphylaxis (PSA) model, and an ovalbumin (OVA)-mediated mouse asthma model. Results: Following OVA/alum-based sensitization and provocation, S100A4-/- mice demonstrated overall suppressed levels of serum anti-OVA IgE and IgG antibodies and proinflammatory cytokines in serum, bronchoalveolar lavage fluid (BALF), and lung exudates. S100A4-/- mice exhibited less severe asthma signs which included inflammatory cell infiltration in the lung tissue and BALF, and suppressed mast cell recruitment in the lungs. Reduced levels of antigen reencounter-induced splenocyte proliferation in vitro were recorded in splenocytes from OVA-sensitized and challenged mice that lacked S100A4-/-. Furthermore, deficiency in the S100A4 gene could dampen mast cell activation both in vitro and in vivo, evidenced by reduced ß-hexosaminidase release and compromised PCA and PSA reaction. We also provided evidence supporting the expression of S100A4 by mast cells. Conclusion: S100A4 is required for mast cell functional activation, and S100A4 may participate in the regulation of allergic responses at least partly through regulating the activation of mast cells.


Assuntos
Asma/metabolismo , Degranulação Celular , Pulmão/metabolismo , Mastócitos/metabolismo , Anafilaxia Cutânea Passiva , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Animais , Asma/genética , Asma/imunologia , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Imunidade Humoral , Imunoglobulina E/metabolismo , Imunoglobulina G/metabolismo , Memória Imunológica , Pulmão/imunologia , Masculino , Mastócitos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina , Proteína A4 de Ligação a Cálcio da Família S100/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA