Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 413
Filtrar
1.
Chem Biodivers ; : e202401146, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772912

RESUMO

Hepatitis B Virus (HBV) infection is a global public health challenge that seriously endangers human health. Soft coral, as a major source of terpenoids, contains many structurally novel and highly bioactive compounds. In previous studies, it has been demonstrated that cembranoid-type diterpenoids showed significant anti-inflammatory and anti-colorectal cancer activities. In this study, cembranoids isolated from Sinularia pedunculata was found with anti-HBV activity for the first time. Among them, compound 6 showed significant anti-HBV activity with an IC50 value of 5.57 µM without cytotoxicity. We analysed the preliminary structure-activity relationship (SAR). Furthermore, it is demonstrated that compound 6 can accelerate the formation of capsid, inhibit HBeAg, HBV core particle DNA, HBV total RNA and pregenomic RNA in a dose dependent manner. We also confirmed the anti-HBV activity in HepG2-NTCP infection system. Finally, we find the anti-HBV mechanism of these compounds by inhibiting the ENI/Xp enhancer/promoter.

2.
Biol Res ; 57(1): 13, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561846

RESUMO

BACKGROUND: Endometrial fibrosis, a significant characteristic of intrauterine adhesion (IUA), is caused by the excessive differentiation and activation of endometrial stromal cells (ESCs). Glutaminolysis is the metabolic process of glutamine (Gln), which has been implicated in multiple types of organ fibrosis. So far, little is known about whether glutaminolysis plays a role in endometrial fibrosis. METHODS: The activation model of ESCs was constructed by TGF-ß1, followed by RNA-sequencing analysis. Changes in glutaminase1 (GLS1) expression at RNA and protein levels in activated ESCs were verified experimentally. Human IUA samples were collected to verify GLS1 expression in endometrial fibrosis. GLS1 inhibitor and glutamine deprivation were applied to ESCs models to investigate the biological functions and mechanisms of glutaminolysis in ESCs activation. The IUA mice model was established to explore the effect of glutaminolysis inhibition on endometrial fibrosis. RESULTS: We found that GLS1 expression was significantly increased in activated ESCs models and fibrotic endometrium. Glutaminolysis inhibition by GLS1 inhibitor bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide (BPTES or glutamine deprivation treatment suppressed the expression of two fibrotic markers, α-SMA and collagen I, as well as the mitochondrial function and mTORC1 signaling in ESCs. Furthermore, inhibition of the mTORC1 signaling pathway by rapamycin suppressed ESCs activation. In IUA mice models, BPTES treatment significantly ameliorated endometrial fibrosis and improved pregnancy outcomes. CONCLUSION: Glutaminolysis and glutaminolysis-associated mTOR signaling play a role in the activation of ESCs and the pathogenesis of endometrial fibrosis through regulating mitochondrial function. Glutaminolysis inhibition suppresses the activation of ESCs, which might be a novel therapeutic strategy for IUA.


Assuntos
Glutamina , Mitocôndrias , Feminino , Camundongos , Humanos , Animais , Glutamina/metabolismo , Fibrose , Mitocôndrias/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , RNA/metabolismo , Endométrio/metabolismo , Endométrio/patologia
3.
Front Bioeng Biotechnol ; 12: 1363742, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558788

RESUMO

In recent years, stem cells and their secretomes, notably exosomes, have received considerable attention in biomedical applications. Exosomes are cellular secretomes used for intercellular communication. They perform the function of intercellular messengers by facilitating the transport of proteins, lipids, nucleic acids, and therapeutic substances. Their biocompatibility, minimal immunogenicity, targetability, stability, and engineerable characteristics have additionally led to their application as drug delivery vehicles. The therapeutic efficacy of exosomes can be improved through surface modification employing functional molecules, including aptamers, antibodies, and peptides. Given their potential as targeted delivery vehicles to enhance the efficiency of treatment while minimizing adverse effects, exosomes exhibit considerable promise. Stem cells are considered advantageous sources of exosomes due to their distinctive characteristics, including regenerative and self-renewal capabilities, which make them well-suited for transplantation into injured tissues, hence promoting tissue regeneration. However, there are notable obstacles that need to be addressed, including immune rejection and ethical problems. Exosomes produced from stem cells have been thoroughly studied as a cell-free strategy that avoids many of the difficulties involved with cell-based therapy for tissue regeneration and cancer treatment. This review provides an in-depth summary and analysis of the existing knowledge regarding exosomes, including their engineering and cardiovascular disease (CVD) treatment applications.

4.
Front Immunol ; 15: 1354676, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638425

RESUMO

Circular RNAs (circRNAs) are a class of transcripts that often are generated by back-splicing that covalently connects the 3'end of the exon to the 5'end. CircRNAs are more resistant to nuclease and more stable than their linear counterparts. One of the well-recognized roles of circRNAs is the miRNA sponging effects that potentially lead to the regulation of downstream proteins. Despite that circRNAs have been reported to be involved in a wide range of human diseases, including cancers, cardiovascular, and neurological diseases, they have not been studied in inflammatory lung responses. Here, we analyzed the circRNA profiles detected in extracellular vesicles (EVs) obtained from the broncho-alveolar lavage fluids (BALF) in response to LPS or acid instillation in mice. Next, we validated two specific circRNAs in the BALF-EVs and BALF cells in response to endotoxin by RT-qPCR, using specific primers targeting the circular form of RNAs rather than the linear host RNAs. The expression of these selected circRNAs in the BALF inflammatory cells, alveolar macrophages (AMs), neutrophils, and lung tissue were analyzed. We further predicted the potential miRNAs that interact with these circRNAs. Our study is the first report to show that circRNAs are detectable in BALF EVs obtained from mice. The EV-cargo circRNAs are significantly altered by the noxious stimuli. The circRNAs identified using microarrays may be validated by RT-qPCR using primers specific to the circular but not the linear form. Future studies to investigate circRNA expression and function including miRNA sponging in lung inflammation potentially uncover novel strategies to develop diagnostic/therapeutic targets.


Assuntos
Infecções Bacterianas , Vesículas Extracelulares , MicroRNAs , Humanos , Animais , Camundongos , RNA Circular/genética , RNA Circular/metabolismo , Líquido da Lavagem Broncoalveolar , MicroRNAs/genética , MicroRNAs/metabolismo , Infecções Bacterianas/metabolismo , Vesículas Extracelulares/metabolismo
5.
Molecules ; 29(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38675548

RESUMO

The fungus Xylaria sp. Z184, harvested from the leaves of Fallopia convolvulus (L.) Á. Löve, has been isolated for the first time. Chemical investigation on the methanol extract of the culture broth of the titles strain led to the discovery of three new pyranone derivatives, called fallopiaxylaresters A-C (1-3), and a new bisabolane-type sesquiterpenoid, named fallopiaxylarol A (4), along with the first complete set of spectroscopic data for the previously reported pestalotiopyrone M (5). Known pyranone derivatives (6-11), sesquiterpenoids (12-14), isocoumarin derivatives (15-17), and an aromatic allenic ether (18) were also co-isolated in this study. All new structures were elucidated by the interpretation of HRESIMS, 1D, 2D NMR spectroscopy, and quantum chemical computation approach. The in vitro antimicrobial, anti-inflammatory, and α-glucosidase-inhibitory activities of the selected compounds and the crude extract were evaluated. The extract was shown to inhibit nitric oxide (NO) production induced by lipopolysaccharide (LPS) in murine RAW264.7 macrophage cells, with an inhibition rate of 77.28 ± 0.82% at a concentration of 50 µg/mL. The compounds 5, 7, and 8 displayed weak antibacterial activity against Staphylococcus areus subsp. aureus at a concentration of 100 µM.


Assuntos
Sesquiterpenos , Xylariales , Camundongos , Animais , Células RAW 264.7 , Xylariales/química , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Sesquiterpenos/isolamento & purificação , Óxido Nítrico/biossíntese , Óxido Nítrico/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Estrutura Molecular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Lipopolissacarídeos , Testes de Sensibilidade Microbiana , Macrófagos/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação
6.
J Ethnopharmacol ; 331: 118079, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38513776

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Polygonum cuspidatum Sieb. et Zucc. is mainly distributed in Shanxi, Gansu, and Sichuan province of China. It is also found in Korea and Japan. Its dried roots and rhizomes are used as medicinal herbs and have been used to treat hyperglycemia and various inflammatory disorders. AIM OF THE REVIEW: This paper aims to provide an up-to-date review of the developments in the studies involving the extraction and purification, structure analysis, pharmacological effects, and potential applications of polysaccharides obtained from Polygonum cuspidatum. Additionally, the possible future research directions of this plant are discussed. MATERIALS AND METHODS: This article used "Polygonum cuspidatum polysaccharide (PCP)" and "Polygonum cuspidatum" as the keywords and gathered relevant data on Polygonum cuspidatum using electronic databases (Elsevier, PubMed, ACS, CNKI, Google Scholar, Baidu Scholar, Web of Science), relevant books, and classic literature about Chinese herb. RESULTS: Excluding irrelevant and repetitive documents, 278 documents were finally included, of which 88 were in Chinese and 190 were in English. The CiteSpace software was used to visualize the trends and keywords in this research field. We concluded that the main extraction methods for Polygonum cuspidatum polysaccharide are water extraction and alcohol precipitation, microwave-assisted extraction, ultrasound-assisted extraction, and microjet extraction. High-performance liquid chromatography and column chromatography are also commonly used in the separation and purification of PCP. PCP has antitumor, immunomodulatory, hypoglycemic, and antioxidant effects. This paper provides an updated and deeper understanding of PCP, serving as a theoretical foundation for the further optimization of polysaccharide structures and the development of PCP as a novel functional material for clinical application.

7.
Chem Biodivers ; 21(5): e202400210, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38433548

RESUMO

Currently, natural products are one of the priceless options for finding novel chemical pharmaceutical entities. Ellipticine is a naturally occurring alkaloid isolated from the leaves of Ochrosia elliptica Labill. Ellipticine and its derivatives are characterized by multiple biological activities. The purpose of this review was to provide a critical and systematic assessment of ellipticine and its derivatives as bioactive molecules over the last 60 years. Publications focused mainly on the total synthesis of alkaloids of this type without any evaluation of bioactivity have been excluded. We have reviewed papers dealing with the synthesis, bioactivity evaluation and mechanism of action of ellipticine and its derivatives. It was found that ellipticine and its derivatives showed cytotoxicity, antimicrobial ability, and anti-inflammatory activity, among which cytotoxicity toward cancer cell lines was the most investigated aspect. The inhibition of DNA topoisomerase II was the most relevant mechanism for cytotoxicity. The PI3K/AKT pathway, p53 pathway, and MAPK pathway were also closely related to the antiproliferative ability of these compounds. In addition, the structure-activity relationship was deduced, and future prospects were outlined. We are confident that these findings will lay a scientific foundation for ellipticine-based drug development, especially for anticancer agents.


Assuntos
Elipticinas , Elipticinas/farmacologia , Elipticinas/química , Humanos , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Estrutura Molecular , Animais , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação
8.
J Ethnopharmacol ; 326: 117901, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38341112

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Wuji Wan (WJW) is a traditional Chinese medicine formula that can be found in the "Prescriptions of Taiping Benevolent Dispensary" that has been employed in treating gastric discomfort, burning epigastric pain, and gastric reflux for hundreds of years and has shown promise for treating gastric ulcers (GUs). However, the active components and mechanism of action against GUs remain unclear. AIM OF THE STUDY: The aim of this study was to explore the active components of WJW and elucidate the underlying mechanism involved in treating GUs. MATERIALS AND METHODS: Initially, cell viability was measured by a cell counting kit 8 (CCK-8) assay to evaluate the efficacy of WJW-containing serum in vitro. The gastric ulcer index, ulcer inhibition rate, hematoxylin and staining (H&E), and periodic acid-Schiff (PAS) staining were used to evaluate the therapeutic effect of WJW in vivo. Subsequently, the levels of inflammatory factors and oxidative stress factors were determined using an enzyme-linked immunosorbent assays (ELISA) on in vitro and in vivo samples. Additionally, UPLC-Q Exactive Plus Orbitrap HRMS was used to analyze the components that were absorbed into the blood of WJW and its metabolites. Network pharmacology and metabolomics were subsequently used to identify the targets and pathways. Real-time quantitative PCR (RT‒qPCR) and Western blotting were used to verify the mRNA and protein levels of the key targets and pathways. Finally, the active components were identified by molecular docking to verify the binding stability of the components and key targets. RESULTS: WJW-containing serum ameliorated ethanol-induced damage in GES-1 cells and promoted cell healing. WJW-containing serum reduced IL-6, TNF-α, MDA, and LDH levels while increasing IL-10, SOD, and T-AOC levels in the cells. Moreover, WJW treatment resulted in decreased IL-6, TNF-α, and MDA levels and increased IL-10, SOD, PGE2, and NO levels in GUs rats. In addition, eight components of WJW were absorbed into the blood. The network pharmacology results revealed 192 common targets for blood entry components and GUs, and KEGG analysis revealed that apoptosis signaling pathways were the main pathways involved in WJW activity against GUs. Metabolomic screening was used to identify 13 differential metabolites. There were 23 common targets for blood entry components, GUs, and differential metabolites, with the key targets TNF (TNF-α), AKT1, PTGS2 (COX2) and MAPK1. WJW significantly inhibited the expression of Bax, Caspase-9, Caspase-3, cleaved Caspase-9, cleaved Caspase-3, TNF-α, COX2, and p-p44/42 MAPK while promoting the expression of Bcl-2 and p-AKT1. Molecular docking revealed that the active components of WJW for the treatment of GUs are berberine, palmatine, coptisine, evodiamine, rutaecarpine, evocarpine, and paeoniflorin. CONCLUSIONS: WJW treatment reduces inflammation and oxidative stress injury and inhibits apoptosis signaling pathways. The main active components are berberine, palmatine, coptisine, evodiamine, rutaecarpine, evocarpine, and paeoniflorin. In this paper, we provide a new strategy for exploring the active components of traditional Chinese medicine formulas for the treatment of diseases based on target mechanisms.


Assuntos
Berberina , Medicamentos de Ervas Chinesas , Glucosídeos , Monoterpenos , Úlcera Gástrica , Animais , Ratos , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Caspase 3 , Caspase 9 , Interleucina-10 , Ciclo-Oxigenase 2 , Interleucina-6 , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fator de Necrose Tumoral alfa , Superóxido Dismutase , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
9.
Cell Commun Signal ; 22(1): 131, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365687

RESUMO

BACKGROUND: Malignant tumours seriously threaten human life and health, and effective treatments for cancer are still being explored. The ability of SHC SH2 domain-binding protein 1 (SHCBP1) to induce cell cycle disturbance and inhibit tumour growth has been increasingly studied, but its dynamic role in the tumour cell cycle and corresponding effects leading to mitotic catastrophe and DNA damage have rarely been studied. RESULTS: In this paper, we found that the nucleoprotein SHCBP1 exhibits dynamic spatiotemporal expression during the tumour cell cycle, and SHCBP1 knockdown slowed cell cycle progression by inducing spindle disorder, as reflected by premature mitotic entry and multipolar spindle formation. This dysfunction was caused by G2/M checkpoint impairment mediated by downregulated WEE1 kinase and NEK7 (a member of the mammalian NIMA-related kinase family) expression and upregulated centromere/kinetochore protein Zeste White 10 (ZW10) expression. Moreover, both in vivo and in vitro experiments confirmed the significant inhibitory effects of SHCBP1 knockdown on tumour growth. Based on these findings, SHCBP1 knockdown in combination with low-dose DNA-damaging agents had synergistic tumouricidal effects on tumour cells. In response to this treatment, tumour cells were forced into the mitotic phase with considerable unrepaired DNA lesions, inducing mitotic catastrophe. These synergistic effects were attributed not only to the abrogation of the G2/M checkpoint and disrupted spindle function but also to the impairment of the DNA damage repair system, as demonstrated by mass spectrometry-based proteomic and western blotting analyses. Consistently, patients with low SHCBP1 expression in tumour tissue were more sensitive to radiotherapy. However, SHCBP1 knockdown combined with tubulin-toxic drugs weakened the killing effect of the drugs on tumour cells, which may guide the choice of chemotherapeutic agents in clinical practice. CONCLUSION: In summary, we elucidated the role of the nucleoprotein SHCBP1 in tumour cell cycle progression and described a novel mechanism by which SHCBP1 regulates tumour progression and through which targeting SHCBP1 increases sensitivity to DNA-damaging agent therapy, indicating its potential as a cancer treatment.


Assuntos
Neoplasias , Proteômica , Animais , Humanos , Proliferação de Células/genética , Ciclo Celular/genética , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Mamíferos/metabolismo , Proteínas Adaptadoras da Sinalização Shc/genética , Proteínas Adaptadoras da Sinalização Shc/metabolismo
10.
Oncogene ; 43(17): 1233-1248, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418544

RESUMO

Liver-specific Ern1 knockout impairs tumor progression in mouse models of hepatocellular carcinoma (HCC). However, the mechanistic role of IRE1α in human HCC remains unclear. In this study, we show that XBP1s, the major downstream effector of IRE1α, is required for HCC cell survival both in vitro and in vivo. Mechanistically, XBP1s transactivates LEF1, a key co-factor of ß-catenin, by binding to its promoter. Moreover, XBP1s physically interacts with LEF1, forming a transcriptional complex that enhances classical Wnt signaling. Consistently, the activities of XBP1s and LEF1 are strongly correlated in human HCC and with disease prognosis. Notably, selective inhibition of XBP1 splicing using an IRE1α inhibitor significantly repressed the viability of tumor explants as well as the growth of tumor xenografts derived from patients with distinct Wnt/LEF1 activities. Finally, machine learning algorithms developed a powerful prognostic signature based on the activities of XBP1s/LEF1. In summary, our study uncovers a key mechanistic role for the IRE1α-XBP1s pathway in human HCC. Targeting this axis could provide a promising therapeutic strategy for HCC with hyperactivated Wnt/LEF1 signaling.

11.
Ecotoxicol Environ Saf ; 272: 116065, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38330872

RESUMO

Bisphenol A (BPA) and its substitute bisphenol S (BPS) are desirable materials widely used in manufacturing plastic products but can pose carcinogenic risks to humans. A new conductive iron-based metal-organic framework (Fe-HHTP)-modified pencil graphite electrode (PGE) for electrochemically sensing BPA and BPS was prepared and fully characterized by SEM, TEM, FT-IR, XRD, and XPS. Results showed that the optimal conditions for preparing Fe-HHTP/PGE were a pH of 6.5, a Fe-HHTP concentration of 2 mg·mL-1, a deposition potential of 0 V, and a deposition time of 100 s. The Fe-HHTP/PGE prepared under such conditions harbored a significant electrocatalytic activity with a detection limit of 0.8 nM for BPA and 1.7 nM for BPS (S/N = 3). Correspondingly, the electrochemical response current was linearly correlated to BPA and BPS, ranging from 0.01 to 100 µM. Fe-HHTP/PGE also obtained satisfactory recoveries by 93.8-102.1% and 96.0-101.3% for detecting BPA and BPS in plastic food packaging samples. Our work has provided a novel electrochemical tool to simultaneously detect BPA and BPS in food packaging samples and environmental matrixes.


Assuntos
Grafite , Estruturas Metalorgânicas , Fenóis , Humanos , Grafite/química , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos Benzidrílicos/química , Eletrodos
12.
Anticancer Drugs ; 35(4): 362-370, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38385960

RESUMO

OBJECTIVE: To study the diagnostic value of mRNA expression in urinary exocrine body in bladder cancer. METHODS: From February 2022 to December 2022, 60 patients diagnosed with bladder cancer by pathology in the Department of Urology, Affiliated Hospital of Chengde Medical University were selected as the case group. In total, 40 healthy subjects receiving physical examinations were selected as the control group. 100 mL of morning urine samples were collected from the subjects in both groups based on the same standard. Three subjects were randomly selected from each group. Urinary exosomes were extracted by differential ultracentrifugation. High-throughput sequencing (RNA-seq) was used to detect mRNA expression profiles in urinary exosomes and identify differentially expressed genes. Bioinformatic analysis was performed to predict major biological functions of differentially expressed genes and related signaling pathways. RT-PCR validated expression levels of differentially expressed genes in urinary exosomes between the two groups. ROC curves evaluated the diagnostic value of differential genes for bladder cancer. Spearman's correlation analysis determined correlations between differentially expressed genes and the occurrence of bladder cancer. ROC curves speculated the diagnostic value of using combined differentially expressed genes. RESULTS: Compared with normal subjects, there were 189 significantly differentially expressed genes in urinary exosomes of bladder cancer patients, including 33 up-regulated and 156 down-regulated. According to go and kyoto encyclopedia of genes and genomes (KEGG) analysis, the above differentially expressed genes may participate in the occurrence and development of bladder cancer through the MAPK pathway, PPAP signaling pathway, PI3K Akt signaling pathway and Hippo signaling pathway, affect protein and lipid metabolism, RNase activity, polysaccharide synthesis, signal transduction and other biological processes, and participate in cell proliferation, death, movement and adhesion, as well as cell differentiation and signal transduction. RT-PCR verified that the expression of tmeff1, SDPR, ACBD7, SCG2 and COL6A2 in the two groups of samples was statistically significant ( P  < 0.05). The ROC curve showed that the area under curve area under the curve of the five differential genes were 0.6934, 0.7746, 0.7239, 0.6396 and 0.6610, respectively. The sensitivity was 42.11%, 64.86%, 47.37%, 73.53% and 76.47%, and the specificity was 90%, 81.36%, 96.36%, 61.02% and 58.18%, respectively. Spearman correlation analysis showed that tmeff1, SDPR and acbd7 were associated with the occurrence of bladder cancer. The ROC curve of the combined diagnosis of the three and the two combined diagnoses suggested that the area under the curve of the combined diagnosis of SDPR and acbd7 was 0.7945, the sensitivity was 89.09%, and the specificity was 60.53%. CONCLUSION: The gene expression profile in urinary exosomes of bladder cancer patients has changed significantly, and the differential genes may play an important biological role in the occurrence and development of bladder cancer. The combined detection of urinary exosome SDPR and ACBD7 has a certain diagnostic value for bladder cancer.


Assuntos
MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , RNA Mensageiro/genética , Perfilação da Expressão Gênica , Fosfatidilinositol 3-Quinases/genética , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Biomarcadores , MicroRNAs/genética
13.
Mater Today Bio ; 25: 100996, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38420143

RESUMO

Reactive Oxygen Species (ROS) refers to a highly reactive class of oxidizing species that have the potential to induce cellular apoptosis and necrosis. Cuproptosis, a type of cell death, is primarily associated with the effects of copper ions. However, the specific relationship between ROS, cuproptosis, and osteosarcoma (OS) remains relatively unexplored. Additionally, there is limited research on the use of cuproptosis in conjunction with oxidative stress for treating OS and inhibiting tumor-induced bone destruction. To address these gaps, a novel treatment approach has been developed for OS and neoplastic bone destruction. This approach involves the utilization of glutathione (GSH) and pH-responsive organic-inorganic mesoporous silica nanoparticles@Cu2S@oxidized Dextran (short for MCD). The MCD material demonstrates excellent cytocompatibility, osteogenesis, tumor suppression, and the ability to inhibit osteoclast formation. The specific mechanism of action involves the mitochondria of the MCD material inhibiting key proteins in the tricarboxylic acid (TCA) cycle. Simultaneously, the generation of ROS promotes this inhibition and leads to alterations in cellular energy metabolism. Moreover, the MCD biomaterial exhibits promising mild-temperature photothermal therapy in the second near-infrared (NIR-II) range, effectively mitigating tumor growth and OS-induced bone destruction in vivo.

14.
J Robot Surg ; 18(1): 99, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38413488

RESUMO

Medtronic launched the Hugo Robotic-Assisted Surgery (RAS) System in 2021, offering a modular alternative to the incumbent market leader in surgical robotics, the Intuitive da Vinci (dV) surgical system. A detailed technical review of the Hugo RAS was conducted to explore the strengths and weaknesses of this new robotic surgical system. Each component of the system-vision tower, arm cart, and surgeon console-was compared against the existing dV systems. The docking process, instrumentation, and external arm movement trajectories were analyzed. The modular Hugo RAS provides the possibility of operating using up to four arm carts. It has certain design features that are unique to itself, and others that have been implemented to address the shortcomings of the dV Si. While Medtronic's first-generation robot offers distinct advantages over the older Intuitive systems, the true test of its mettle will be its performance compared to the latest dV Xi.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Cirurgiões , Humanos , Procedimentos Cirúrgicos Robóticos/métodos
15.
Yi Chuan ; 46(2): 126-139, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38340003

RESUMO

Mutation accumulation in somatic cells contributes to cancer development, aging and many non-malignant diseases. The true mutation frequency in normal cells is extremely low, which presents a challenge in detecting these mutations at such low frequencies. The emergence of next-generation sequencing (NGS) technology enables direct detection of rare mutations across the entire genome of any species. This breakthrough overcomes numerous limitations of traditional mutation detection techniques that rely on specific detection models and sites. However, conventional NGS is limited in its application for detecting low-frequency mutations due to its high sequencing error rate. To address this challenge, high-accuracy NGS sequencing techniques based on molecular consensus sequencing strategies have been developed. These techniques have the ability to correct sequencing errors, resulting in error rates lower than 10-7, are expected to serve as effective tools for low-frequency mutation detection. Error-corrected NGS (ecNGS) techniques hold great potential in various areas, including safety evaluation and research on environmental mutagens, risk assessment of cell and gene therapy drugs, population health risk monitoring, and fundamental research in life sciences. This review highlights a comprehensive review of the research progress in low-frequency mutation detection techniques based on NGS, and provides a glimpse into their potential applications. It also offers an outlook on the potential applications of these techniques, thereby providing valuable insights for further development, research, and application of this technology in relevant fields.


Assuntos
Neoplasias , Humanos , Mutação , Neoplasias/genética , Taxa de Mutação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Tecnologia
16.
Theranostics ; 14(3): 1065-1080, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250042

RESUMO

Neuroendocrine prostate cancer (NEPC) typically implies severe lethality and limited treatment options. The precise identification of NEPC cells holds paramount significance for both research and clinical applications, yet valid NEPC biomarker remains to be defined. Methods: Leveraging 11 published NE-related gene sets, 11 single-cell RNA-sequencing (scRNA-seq) cohorts, 15 bulk transcriptomic cohorts, and 13 experimental models of prostate cancer (PCa), we employed multiple advanced algorithms to construct and validate a robust NEPC risk prediction model. Results: Through the compilation of a comprehensive scRNA-seq reference atlas (comprising a total of 210,879 single cells, including 66 tumor samples) from 9 multicenter datasets of PCa, we observed inconsistent and inefficient performance among the 11 published NE gene sets. Therefore, we developed an integrative analysis pipeline, identifying 762 high-quality NE markers. Subsequently, we derived the NE cell-intrinsic gene signature, and developed an R package named NEPAL, to predict NEPC risk scores. By applying to multiple independent validation datasets, NEPAL consistently and accurately assigned NE feature and delineated PCa progression. Intriguingly, NEPAL demonstrated predictive capabilities for prognosis and therapy responsiveness, as well as the identification of potential epigenetic drivers of NEPC. Conclusion: The present study furnishes a valuable tool for the identification of NEPC and the monitoring of PCa progression through transcriptomic profiles obtained from both bulk and single-cell sources.


Assuntos
Células Neuroendócrinas , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Próstata , Perfilação da Expressão Gênica , Transcriptoma/genética
17.
Biomaterials ; 306: 122479, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38295649

RESUMO

Due to glioblastoma (GBM) being the most intractable brain tumor, the continuous improvement of effective treatment methods is indispensable. The combination of siRNA-based gene therapy and chemotherapy for GBM treatment has now manifested great promise. Herein, Gint4.T-siHDGF chimera-capped mesoporous silica nanoparticles (MSN) encapsulating chemotherapy drug temozolomide (TMZ), termed as TMSN@siHDGF-Gint4.T, is developed to co-deliver gene-drug siHDGF and TMZ for synergistic GBM therapy. TMSN@siHDGF-Gint4.T possesses spherical nucleic acid-like architecture that can improve the enzyme resistance of siHDGF and increase the blood-brain barrier (BBB) permeability of the nanovehicle. The aptamer Gint4.T of chimera endows the nanovehicle with GBM cell-specific binding ability. When administered systemically, TMSN@siHDGF-Gint4.T can traverse BBB and enter GBM cells. In the acidic lysosome environment, the cleavage of benzoic-imine bond on MSN surface leads to an initial rapid release of chimera, followed by a slow release of TMZ encapsulated in MSN. The sequential release of siHDGF and TMZ first allows siHDGF to exert its gene-silencing effect, and the downregulation of HDGF expression further enhances the cytotoxicity of TMZ. In vivo experimental results have demonstrated that TMSN@siHDGF-Gint4.T significantly inhibits tumor growth and extends the survival time of GBM-bearing mice. Thus, the as-developed TMSN@siHDGF-Gint4.T affords a potential approach for the combination treatment of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Nitrilas , Animais , Camundongos , Temozolomida/farmacologia , Glioblastoma/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Nanopartículas/química , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos
18.
Signal Transduct Target Ther ; 9(1): 15, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195689

RESUMO

Human microorganisms, including bacteria, fungi, and viruses, play key roles in several physiological and pathological processes. Some studies discovered that tumour tissues once considered sterile actually host a variety of microorganisms, which have been confirmed to be closely related to oncogenesis. The concept of intratumoural microbiota was subsequently proposed. Microbiota could colonise tumour tissues through mucosal destruction, adjacent tissue migration, and hematogenic invasion and affect the biological behaviour of tumours as an important part of the tumour microenvironment. Mechanistic studies have demonstrated that intratumoural microbiota potentially promote the initiation and progression of tumours by inducing genomic instability and mutations, affecting epigenetic modifications, promoting inflammation response, avoiding immune destruction, regulating metabolism, and activating invasion and metastasis. Since more comprehensive and profound insights about intratumoral microbiota are continuously emerging, new methods for the early diagnosis and prognostic assessment of cancer patients have been under examination. In addition, interventions based on intratumoural microbiota show great potential to open a new chapter in antitumour therapy, especially immunotherapy, although there are some inevitable challenges. Here, we aim to provide an extensive review of the concept, development history, potential sources, heterogeneity, and carcinogenic mechanisms of intratumoural microorganisms, explore the potential role of microorganisms in tumour prognosis, and discuss current antitumour treatment regimens that target intratumoural microorganisms and the research prospects and limitations in this field.


Assuntos
Microbiota , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Imunoterapia , Carcinogênese/genética , Transformação Celular Neoplásica , Microbiota/genética , Microambiente Tumoral/genética
19.
J Environ Manage ; 353: 120163, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38295643

RESUMO

Cement production is a primary source of global carbon emissions. As a hazardous waste, municipal solid waste incineration fly ash (MSWI-FA) can be pretreated as a cementitious and effective carbon capture material. This study proposes an efficient carbonation dechlorination pretreatment and resource recovery strategy using flue gas micro-nano bubble (MNB) to wash MSWI-FA. The results showed that the flue gas MNB water washing reaction solution inhibited CaCO3 boundary layer blocking and adsorption on NaCl and KCl leaching. Under low water-to-solid ratio and CO2 concentration conditions, two-step washing reduced the MSWI-FA chlorine content to <1%, improving the dechlorination effect by 19.72% compared to conventional carbonation. The flue gas MNB water accelerated the precipitation of Ca2+ and Ca(ClO)2 in the form of calcite. The higher the CO2 concentration in the flue gas MNB, the better the fragmentation and purification of the MSWI-FA shell, leading to improved dechlorination and CO2 fixation. Under optimized conditions, the mean particle size of MSWI-FA decreased by 47.82%, and the CO2 fixation rate reached 73.80%, with a 58.35% increase in the washing carbonation rate. MSWI-FA pretreated by flue gas MNB washing was used as both the raw material and supplementary cementitious material for sulfoaluminate cementitious (SAC) material, exhibiting excellent compressive strength and heavy metal stabilization. The maximum compressive strength of the MSWI-FA-based SAC material cured for 28 d reached 130 MPa. Cr leaching was inhibited with increased hydration time, and the leaching concentration was far below the standard limit.


Assuntos
Metais Pesados , Eliminação de Resíduos , Resíduos Sólidos/análise , Cinza de Carvão , Eliminação de Resíduos/métodos , Dióxido de Carbono , Material Particulado , Incineração/métodos , Metais Pesados/análise , Carbonatos , Carbono , Água
20.
J Cancer ; 15(4): 889-907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38230219

RESUMO

Background: Randomized controlled trials (RCTs) have demonstrated that combining Chinese herbal injections (CHIs) with oxaliplatin plus tegafur (SOX) chemotherapy regimens improves clinical effectiveness and reduces adverse reactions in patients with advanced gastric cancer (AGC). These RCTs highlight the potential applications of CHIs and their impact on AGC patient prognosis. However, there is insufficient comparative evidence on the clinical effectiveness and safety of different CHIs when combined with SOX. Therefore, we performed a network meta-analysis to rank the clinical effectiveness and safety of different CHIs when combined with SOX chemotherapy regimens. This study aimed to provide evidence for selecting appropriate CHIs in the treatment of patients with AGC. Methods: We searched eight databases from their inception until March 2023. Surface Under the Cumulative Ranking Curve (SUCRA) probability values were used to rank the treatment measures, and the Confidence in Network Meta-Analysis (CINeMA) software assessed the grading of evidence. Results: A total of 51 RCTs involving 3,703 AGC patients were identified. Huachansu injections + SOX demonstrated the highest clinical effectiveness (SUCRA: 78.17%), significantly reducing the incidence of leukopenia (93.35%), thrombocytopenia (80.19%), and nausea and vomiting (95.15%). Shenfu injections + SOX improved Karnofsky's Performance Status (75.59%) and showed a significant reduction in peripheral neurotoxicity incidence (88.26%). Aidi injections + SOX were most effective in reducing the incidence of liver function damage (75.16%). According to CINeMA, most confidence rating results were classified as "low". Conclusion: The combination of CHIs and SOX shows promising effects in the treatment of AGC compared to SOX alone. Huachansu and Shenfu injections offer the greatest overall advantage among the CHIs, while Aidi injections are optimal for reducing the incidence of liver damage. However, further rigorous RCTs with larger sample sizes and additional pharmacological studies are necessary to reinforce these findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA