Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 13(8): 2376-2390, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39115381

RESUMO

Inflammatory bowel disease (IBD) is characterized by chronic intestinal inflammation with no cure and limited treatment options that often have systemic side effects. In this study, we developed a target-specific system to potentially treat IBD by engineering the probiotic bacterium Escherichia coli Nissle 1917 (EcN). Our modular system comprises three components: a transcription factor-based sensor (NorR) capable of detecting the inflammation biomarker nitric oxide (NO), a type 1 hemolysin secretion system, and a therapeutic cargo consisting of a library of humanized anti-TNFα nanobodies. Despite a reduction in sensitivity, our system demonstrated a concentration-dependent response to NO, successfully secreting functional nanobodies with binding affinities comparable to the commonly used drug Adalimumab, as confirmed by enzyme-linked immunosorbent assay and in vitro assays. This newly validated nanobody library expands EcN therapeutic capabilities. The adopted secretion system, also characterized for the first time in EcN, can be further adapted as a platform for screening and purifying proteins of interest. Additionally, we provided a mathematical framework to assess critical parameters in engineering probiotic systems, including the production and diffusion of relevant molecules, bacterial colonization rates, and particle interactions. This integrated approach expands the synthetic biology toolbox for EcN-based therapies, providing novel parts, circuits, and a model for tunable responses at inflammatory hotspots.


Assuntos
Escherichia coli , Doenças Inflamatórias Intestinais , Probióticos , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Doenças Inflamatórias Intestinais/terapia , Óxido Nítrico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Anticorpos de Domínio Único/genética , Adalimumab/genética , Inflamação/metabolismo
2.
Mol Ther Nucleic Acids ; 35(3): 102229, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38952440

RESUMO

p47 phox -deficient chronic granulomatous disease (p47-CGD) is a primary immunodeficiency caused by mutations in the neutrophil cytosolic factor 1 (NCF1) gene, resulting in defective NADPH oxidase function in phagocytes. Due to its complex genomic context, the NCF1 locus is not suited for safe gene editing with current genome editing technologies. Therefore, we developed a targeted NCF1 coding sequence knock-in by CRISPR-Cas9 ribonucleoprotein and viral vector template delivery, to restore p47 phox expression under the control of the endogenous NCF2 locus. NCF2 encodes for p67 phox , an NADPH oxidase subunit that closely interacts with p47 phox and is predominantly expressed in myeloid cells. This approach restored p47 phox expression and NADPH oxidase function in p47-CGD patient hematopoietic stem and progenitor cells (HSPCs) and in p47 phox -deficient mouse HSPCs, with the transgene expression following a myeloid differentiation pattern. Adeno-associated viral vectors performed favorably over integration-deficient lentiviral vectors for template delivery, with fewer off-target integrations and higher correction efficacy in HSPCs. Such myeloid-directed gene editing is promising for clinical CGD gene therapy, as it leads to the co-expression of p47 phox and p67 phox , ensuring spatiotemporal and near-physiological transgene expression in myeloid cells.

3.
Nat Chem Biol ; 20(3): 333-343, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37735239

RESUMO

CRISPR-Cas9 genome engineering is a powerful technology for correcting genetic diseases. However, the targeting range of Cas9 proteins is limited by their requirement for a protospacer adjacent motif (PAM), and in vivo delivery is challenging due to their large size. Here, we use phage-assisted continuous directed evolution to broaden the PAM compatibility of Campylobacter jejuni Cas9 (CjCas9), the smallest Cas9 ortholog characterized to date. The identified variant, termed evoCjCas9, primarily recognizes N4AH and N5HA PAM sequences, which occur tenfold more frequently in the genome than the canonical N3VRYAC PAM site. Moreover, evoCjCas9 exhibits higher nuclease activity than wild-type CjCas9 on canonical PAMs, with editing rates comparable to commonly used PAM-relaxed SpCas9 variants. Combined with deaminases or reverse transcriptases, evoCjCas9 enables robust base and prime editing, with the small size of evoCjCas9 base editors allowing for tissue-specific installation of A-to-G or C-to-T transition mutations from single adeno-associated virus vector systems.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Mutação , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Genoma
4.
Nature ; 599(7885): 497-502, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34759315

RESUMO

Canonical CRISPR-Cas systems provide adaptive immunity against mobile genetic elements1. However, type I-F, I-B and V-K systems have been adopted by Tn7-like transposons to direct RNA-guided transposon insertion2-7. Type V-K CRISPR-associated transposons rely on the pseudonuclease Cas12k, the transposase TnsB, the AAA+ ATPase TnsC and the zinc-finger protein TniQ7, but the molecular mechanism of RNA-directed DNA transposition has remained elusive. Here we report cryo-electron microscopic structures of a Cas12k-guide RNA-target DNA complex and a DNA-bound, polymeric TnsC filament from the CRISPR-associated transposon system of the photosynthetic cyanobacterium Scytonema hofmanni. The Cas12k complex structure reveals an intricate guide RNA architecture and critical interactions mediating RNA-guided target DNA recognition. TnsC helical filament assembly is ATP-dependent and accompanied by structural remodelling of the bound DNA duplex. In vivo transposition assays corroborate key features of the structures, and biochemical experiments show that TniQ restricts TnsC polymerization, while TnsB interacts directly with TnsC filaments to trigger their disassembly upon ATP hydrolysis. Together, these results suggest that RNA-directed target selection by Cas12k primes TnsC polymerization and DNA remodelling, generating a recruitment platform for TnsB to catalyse site-specific transposon insertion. Insights from this work will inform the development of CRISPR-associated transposons as programmable site-specific gene insertion tools.


Assuntos
Sistemas CRISPR-Cas , Cianobactérias , Elementos de DNA Transponíveis/genética , Edição de Genes/métodos , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Biopolímeros , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Microscopia Crioeletrônica , Cianobactérias/enzimologia , Cianobactérias/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA Bacteriano/ultraestrutura , Modelos Moleculares , Mutagênese Insercional , Polimerização , RNA/genética , RNA/metabolismo , Especificidade por Substrato , Transposases/metabolismo , Transposases/ultraestrutura , Dedos de Zinco
5.
Nat Commun ; 12(1): 3778, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145251

RESUMO

N6-methyladenosine (m6A) is the most abundant internal modification on mRNA which influences most steps of mRNA metabolism and is involved in several biological functions. The E3 ubiquitin ligase Hakai was previously found in complex with components of the m6A methylation machinery in plants and mammalian cells but its precise function remained to be investigated. Here we show that Hakai is a conserved component of the methyltransferase complex in Drosophila and human cells. In Drosophila, its depletion results in reduced m6A levels and altered m6A-dependent functions including sex determination. We show that its ubiquitination domain is required for dimerization and interaction with other members of the m6A machinery, while its catalytic activity is dispensable. Finally, we demonstrate that the loss of Hakai destabilizes several subunits of the methyltransferase complex, resulting in impaired m6A deposition. Our work adds functional and molecular insights into the mechanism of the m6A mRNA writer complex.


Assuntos
Adenosina/análogos & derivados , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Metiltransferases/metabolismo , RNA Mensageiro/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Adenosina/metabolismo , Animais , Linhagem Celular , Drosophila melanogaster , Células HeLa , Humanos , Metilação , Metiltransferases/genética , Processamento Pós-Transcricional do RNA/genética , Splicing de RNA/genética
6.
Mol Cell ; 81(12): 2520-2532.e16, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33930333

RESUMO

The tRNA ligase complex (tRNA-LC) splices precursor tRNAs (pre-tRNA), and Xbp1-mRNA during the unfolded protein response (UPR). In aerobic conditions, a cysteine residue bound to two metal ions in its ancient, catalytic subunit RTCB could make the tRNA-LC susceptible to oxidative inactivation. Here, we confirm this hypothesis and reveal a co-evolutionary association between the tRNA-LC and PYROXD1, a conserved and essential oxidoreductase. We reveal that PYROXD1 preserves the activity of the mammalian tRNA-LC in pre-tRNA splicing and UPR. PYROXD1 binds the tRNA-LC in the presence of NAD(P)H and converts RTCB-bound NAD(P)H into NAD(P)+, a typical oxidative co-enzyme. However, NAD(P)+ here acts as an antioxidant and protects the tRNA-LC from oxidative inactivation, which is dependent on copper ions. Genetic variants of PYROXD1 that cause human myopathies only partially support tRNA-LC activity. Thus, we establish the tRNA-LC as an oxidation-sensitive metalloenzyme, safeguarded by the flavoprotein PYROXD1 through an unexpected redox mechanism.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , RNA Ligase (ATP)/metabolismo , RNA de Transferência/metabolismo , Animais , Antioxidantes/fisiologia , Domínio Catalítico , Feminino , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NAD/metabolismo , NADP/metabolismo , Oxirredução , Oxirredutases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/fisiologia , RNA Ligase (ATP)/química , RNA Ligase (ATP)/genética , Splicing de RNA/genética , Splicing de RNA/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Proteína 1 de Ligação a X-Box/metabolismo
7.
Mol Ther Methods Clin Dev ; 17: 936-943, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32420407

RESUMO

Resurrection of non-processed pseudogenes may increase the efficacy of therapeutic gene editing, upon simultaneous targeting of a mutated gene and its highly homologous pseudogenes. To investigate the potency of this approach for clinical gene therapy of human diseases, we corrected a pseudogene-associated disorder, the immunodeficiency p47 phox -deficient chronic granulomatous disease (p47 phox CGD), using clustered regularly interspaced short palindromic repeats-associated nuclease Cas9 (CRISPR-Cas9) to target mutated neutrophil cytosolic factor 1 (NCF1). Being separated by less than two million base pairs, NCF1 and two pseudogenes are closely co-localized on chromosome 7. In healthy people, a two-nucleotide GT deletion (ΔGT) is present in the NCF1B and NCF1C pseudogenes only. In the majority of patients with p47 phox CGD, the NCF1 gene is inactivated due to a ΔGT transfer from one of the two non-processed pseudogenes. Here we demonstrate that concurrent targeting and correction of mutated NCF1 and its pseudogenes results in therapeutic CGD phenotype correction, but also causes potentially harmful chromosomal deletions between the targeted loci in a p47 phox -deficient CGD cell line model. Therefore, development of genome-editing-based treatment of pseudogene-related disorders mandates thorough safety examination, as well as technological advances, limiting concurrent induction of multiple double-strand breaks on a single chromosome.

8.
Nat Commun ; 11(1): 1596, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221291

RESUMO

Bacterial and archaeal CRISPR-Cas systems provide RNA-guided immunity against genetic invaders such as bacteriophages and plasmids. Upon target RNA recognition, type III CRISPR-Cas systems produce cyclic-oligoadenylate second messengers that activate downstream effectors, including Csm6 ribonucleases, via their CARF domains. Here, we show that Enteroccocus italicus Csm6 (EiCsm6) degrades its cognate cyclic hexa-AMP (cA6) activator, and report the crystal structure of EiCsm6 bound to a cA6 mimic. Our structural, biochemical, and in vivo functional assays reveal how cA6 recognition by the CARF domain activates the Csm6 HEPN domains for collateral RNA degradation, and how CARF domain-mediated cA6 cleavage provides an intrinsic off-switch to limit Csm6 activity in the absence of ring nucleases. These mechanisms facilitate rapid invader clearance and ensure termination of CRISPR interference to limit self-toxicity.


Assuntos
Nucleotídeos de Adenina/química , Nucleotídeos de Adenina/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endonucleases/química , Endonucleases/metabolismo , Oligorribonucleotídeos/química , Oligorribonucleotídeos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas , Cristalografia por Raios X , Ativação Enzimática , Modelos Moleculares , Domínios Proteicos , Estabilidade de RNA
9.
RNA ; 25(6): 685-701, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30910870

RESUMO

Eukaryotic ribosome biogenesis is a highly orchestrated process involving numerous assembly factors including ATP-dependent RNA helicases. The DEAH helicase DHX37 (Dhr1 in yeast) is activated by the ribosome biogenesis factor UTP14A to facilitate maturation of the small ribosomal subunit. We report the crystal structure of DHX37 in complex with single-stranded RNA, revealing a canonical DEAH ATPase/helicase architecture complemented by a structurally unique carboxy-terminal domain (CTD). Structural comparisons of the nucleotide-free DHX37-RNA complex with DEAH helicases bound to RNA and ATP analogs reveal conformational changes resulting in a register shift in the bound RNA, suggesting a mechanism for ATP-dependent 3'-5' RNA translocation. We further show that a conserved sequence motif in UTP14A interacts with and activates DHX37 by stimulating its ATPase activity and enhancing RNA binding. In turn, the CTD of DHX37 is required, but not sufficient, for interaction with UTP14A in vitro and is essential for ribosome biogenesis in vivo. Together, these results shed light on the mechanism of DHX37 and the function of UTP14A in controlling its recruitment and activity during ribosome biogenesis.


Assuntos
Adenosina Trifosfatases/química , Trifosfato de Adenosina/análogos & derivados , RNA Helicases DEAD-box/química , Biogênese de Organelas , RNA Helicases/química , RNA/química , Ribonucleoproteínas Nucleolares Pequenas/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Camundongos , Modelos Moleculares , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Especificidade por Substrato
10.
EMBO J ; 37(7)2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29510985

RESUMO

The LSM domain-containing protein LSM14/Rap55 plays a role in mRNA decapping, translational repression, and RNA granule (P-body) assembly. How LSM14 interacts with the mRNA silencing machinery, including the eIF4E-binding protein 4E-T and the DEAD-box helicase DDX6, is poorly understood. Here we report the crystal structure of the LSM domain of LSM14 bound to a highly conserved C-terminal fragment of 4E-T. The 4E-T C-terminus forms a bi-partite motif that wraps around the N-terminal LSM domain of LSM14. We also determined the crystal structure of LSM14 bound to the C-terminal RecA-like domain of DDX6. LSM14 binds DDX6 via a unique non-contiguous motif with distinct directionality as compared to other DDX6-interacting proteins. Together with mutational and proteomic studies, the LSM14-DDX6 structure reveals that LSM14 has adopted a divergent mode of binding DDX6 in order to support the formation of mRNA silencing complexes and P-body assembly.


Assuntos
RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA/fisiologia , RNA Mensageiro/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Caenorhabditis elegans , Cristalografia por Raios X , RNA Helicases DEAD-box/genética , Drosophila melanogaster , Fator de Iniciação 4E em Eucariotos/metabolismo , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas/química , Proteínas/metabolismo , Proteômica , Proteínas Proto-Oncogênicas/genética , Recombinases Rec A/química , Proteínas Recombinantes/química , Ribonucleoproteínas/genética , Alinhamento de Sequência
11.
Elife ; 52016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27627798

RESUMO

Methylation of adenosines at the N(6) position (m(6)A) is a dynamic and abundant epitranscriptomic mark that regulates critical aspects of eukaryotic RNA metabolism in numerous biological processes. The RNA methyltransferases METTL3 and METTL14 are components of a multisubunit m(6)A writer complex whose enzymatic activity is substantially higher than the activities of METTL3 or METTL14 alone. The molecular mechanism underpinning this synergistic effect is poorly understood. Here we report the crystal structure of the catalytic core of the human m(6)A writer complex comprising METTL3 and METTL14. The structure reveals the heterodimeric architecture of the complex and donor substrate binding by METTL3. Structure-guided mutagenesis indicates that METTL3 is the catalytic subunit of the complex, whereas METTL14 has a degenerate active site and plays non-catalytic roles in maintaining complex integrity and substrate RNA binding. These studies illuminate the molecular mechanism and evolutionary history of eukaryotic m(6)A modification in post-transcriptional genome regulation.


Assuntos
Metiltransferases/química , Complexos Multiproteicos/química , Proteínas de Ligação ao Cap de RNA/química , Cristalografia por Raios X , Humanos , Metilação , Metiltransferases/genética , Complexos Multiproteicos/genética , Mutagênese , Conformação Proteica , Proteínas de Ligação ao Cap de RNA/genética
12.
Acta Crystallogr D Struct Biol ; 72(Pt 3): 421-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26960129

RESUMO

Recent improvements in data-collection strategies have pushed the limits of native SAD (single-wavelength anomalous diffraction) phasing, a method that uses the weak anomalous signal of light elements naturally present in macromolecules. These involve the merging of multiple data sets from either multiple crystals or from a single crystal collected in multiple orientations at a low X-ray dose. Both approaches yield data of high multiplicity while minimizing radiation damage and systematic error, thus ensuring accurate measurements of the anomalous differences. Here, the combined use of these two strategies is described to solve cases of native SAD phasing that were particular challenges: the integral membrane diacylglycerol kinase (DgkA) with a low Bijvoet ratio of 1% and the large 200 kDa complex of the CRISPR-associated endonuclease (Cas9) bound to guide RNA and target DNA crystallized in the low-symmetry space group C2. The optimal native SAD data-collection strategy based on systematic measurements performed on the 266 kDa multiprotein/multiligand tubulin complex is discussed.


Assuntos
Cristalografia por Raios X/métodos , Proteínas/química , Animais , Proteínas Associadas a CRISPR/química , Bovinos , DNA/química , Diacilglicerol Quinase/química , Escherichia coli/química , Escherichia coli/enzimologia , Modelos Moleculares , Conformação Proteica , RNA Guia de Cinetoplastídeos/química , Ratos , Staphylococcus/química , Staphylococcus/enzimologia , Estatmina/química , Tubulina (Proteína)/química
13.
Mol Cell ; 35(6): 868-80, 2009 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-19716330

RESUMO

MicroRNAs (miRNAs) inhibit mRNA expression in general by base pairing to the 3'UTR of target mRNAs and consequently inhibiting translation and/or initiating poly(A) tail deadenylation and mRNA destabilization. Here we examine the mechanism and kinetics of miRNA-mediated deadenylation in mouse Krebs-2 ascites extract. We demonstrate that miRNA-mediated mRNA deadenylation occurs subsequent to initial translational inhibition, indicating a two-step mechanism of miRNA action, which serves to consolidate repression. We show that a let-7 miRNA-loaded RNA-induced silencing complex (miRISC) interacts with the poly(A)-binding protein (PABP) and the CAF1 and CCR4 deadenylases. In addition, we demonstrate that miRNA-mediated deadenylation is dependent upon CAF1 activity and PABP, which serves as a bona fide miRNA coactivator. Importantly, we present evidence that GW182, a core component of the miRISC, directly interacts with PABP via its C-terminal region and that this interaction is required for miRNA-mediated deadenylation.


Assuntos
Inativação Gênica , MicroRNAs/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Animais , Proteínas Argonautas , Ascite/genética , Ascite/metabolismo , Autoantígenos/metabolismo , Sítios de Ligação , Carcinoma Krebs 2/genética , Carcinoma Krebs 2/metabolismo , Sistema Livre de Células , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Exorribonucleases , Células HeLa , Humanos , Cinética , Camundongos , Proteínas de Ligação a Poli(A)/genética , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Proteínas/genética , Estabilidade de RNA , Complexo de Inativação Induzido por RNA/genética , Receptores CCR4/metabolismo , Proteínas Repressoras , Ribonucleases , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA