Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 5(2): 103034, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38662545

RESUMO

Cellular protein homeostasis is maintained by the disposal of aggregated misfolded proteins. Here, we present a protocol for investigating the involvement of the proteins of interest in misfolded protein degradation via Agrobacterium-mediated transient expression in Nicotiana benthamiana. We describe in detail the steps of misfolded protein design, transient protein expression in N. benthamiana, subsequent total protein extraction, and quantification of misfolded proteins through western blotting. This generalizable system can be used for misfolded proteins derived from various plants or microbes. For complete details on the use and execution of this protocol, please refer to Ai et al.1.

2.
Cell Rep ; 42(11): 113391, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37930886

RESUMO

Protein homeostasis is vital for organisms and requires chaperones like the conserved Bcl-2-associated athanogene (BAG) co-chaperones that bind to the heat shock protein 70 (HSP70) through their C-terminal BAG domain (BD). Here, we show an unconventional BAG subfamily exclusively found in oomycetes. Oomycete BAGs feature an atypical N-terminal BD with a short and oomycete-specific α1 helix (α1'), plus a C-terminal small heat shock protein (sHSP) domain. In oomycete pathogen Phytophthora sojae, both BD-α1' and sHSP domains are required for P. sojae BAG (PsBAG) function in cyst germination, pathogenicity, and unfolded protein response assisting in 26S proteasome-mediated degradation of misfolded proteins. PsBAGs form homo- and heterodimers through their unique BD-α1' to function properly, with no recruitment of HSP70s to form the common BAG-HSP70 complex found in other eukaryotes. Our study highlights an oomycete-exclusive protein homeostasis mechanism mediated by atypical BAGs, which provides a potential target for oomycete disease control.


Assuntos
Proteínas de Choque Térmico HSP70 , Oomicetos , Proteínas de Choque Térmico HSP70/metabolismo , Proteostase , Virulência , Chaperonas Moleculares/metabolismo , Oomicetos/metabolismo
3.
Hortic Res ; 10(2): uhac255, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37533673

RESUMO

Elicitins are microbe-associated molecular patterns produced by oomycetes to elicit plant defense. It is still unclear whether elicitins derived from non-pathogenic oomycetes can be used as bioactive molecules for disease control. Here, for the first time we identify and characterize an elicitin named PpEli2 from the soil-borne oomycete Pythium periplocum, which is a non-pathogenic mycoparasite colonizing the root ecosystem of diverse plant species. Perceived by a novel cell surface receptor-like protein, REli, that is conserved in various plants (e.g. tomato, pepper, soybean), PpEli2 can induce hypersensitive response cell death and an immunity response in Nicotiana benthamiana. Meanwhile, PpEli2 enhances the interaction between REli and its co-receptor BAK1. The receptor-dependent immune response triggered by PpEli2 is able to protect various plant species against Phytophthora and fungal infections. Collectively, our work reveals the potential agricultural application of non-pathogenic elicitins and their receptors in conferring broad-spectrum resistance for plant protection.

4.
Front Plant Sci ; 14: 1116147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36743479

RESUMO

The Phytophthora pathogen causes enormous damage to important agricultural plants. This group of filamentous pathogens is phylogenetically distant from fungi, making them difficult to control by most chemical fungicides. Lysobacter enzymogenes OH11 (OH11) is a biocontrol bacterium that secretes HSAF (Heat-Stable Antifungal Factor) as a broad-spectrum antifungal weapon. Here, we showed that OH11 could also control a variety of plant Phytophthora diseases caused by three major oomycetes (P. sojae, P. capsici and P. infestans). We provided abundant evidence to prove that OH11 protected host plants from Phytophthora pathogen infection by inhibiting mycelial growth, digesting cysts, suppressing cyst germination, and eliciting plant immune responses. Interestingly, the former two processes required the presence of HSAF, while the latter two did not. This suggested that L. enzymogenes could prevent Phytophthora infection via multiple previously unknown mechanisms. Therefore, this study showed that L. enzymogenes could serve as a promising alternative resource for promoting plant resistance to multiple Phytophthora pathogens.

5.
New Phytol ; 237(6): 2388-2403, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36519219

RESUMO

Apolygus lucorum (Meyer-Dur; Heteroptera: Miridae) is a major agricultural pest infesting crops, vegetables, and fruit trees. During feeding, A. lucorum secretes a plethora of effectors into its hosts to promote infestation. However, the molecular mechanisms of these effectors manipulating plant immunity are largely unknown. Here, we investigated the molecular mechanism underlying the effector Al106 manipulation of plant-insect interaction by RNA interference, electrical penetration graph, insect and pathogen bioassays, protein-protein interaction studies, and protein ubiquitination experiment. Expression of Al106 in Nicotiana benthamiana inhibits pathogen-associated molecular pattern-induced cell death and reactive oxygen species burst, and promotes insect feeding and plant pathogen infection. In addition, peptidyl-prolyl cis-trans isomerase (PPIase) activity of Al106 is required for its function to inhibit PTI.Al106 interacts with a plant U-box (PUB) protein, PUB33, from N. benthamiana and Arabidopsis thaliana. We also demonstrated that PUB33 is a positive regulator of plant immunity. Furthermore, an in vivo assay revealed that Al106 inhibits ubiquitination of NbPUB33 depending on PPIase activity. Our findings revealed that a novel cyclophilin effector may interact with plant PUB33 to suppress plant immunity and facilitate insect feeding in a PPIase activity-dependent manner.


Assuntos
Ciclofilinas , Heterópteros , Animais , Frutas , Árvores , Imunidade Vegetal
6.
Plant Physiol ; 191(2): 925-945, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461945

RESUMO

Oomycete pathogens secrete numerous effectors to manipulate plant immunity and promote infection. However, relatively few effector types have been well characterized. In this study, members of an FYVE domain-containing protein family that are highly expanded in oomycetes were systematically identified, and one secreted protein, PsFYVE1, was selected for further study. PsFYVE1 enhanced Phytophthora capsici infection in Nicotiana benthamiana and was necessary for Phytophthora sojae virulence. The FYVE domain of PsFYVE1 had PI3P-binding activity that depended on four conserved amino acid residues. Furthermore, PsFYVE1 targeted RNA-binding proteins RZ-1A/1B/1C in N. benthamiana and soybean (Glycine max), and silencing of NbRZ-1A/1B/1C genes attenuated plant immunity. NbRZ-1A was associated with the spliceosome complex that included three important components, glycine-rich RNA-binding protein 7 (NbGRP7), glycine-rich RNA-binding protein 8 (NbGRP8), and a specific component of the U1 small nuclear ribonucleoprotein complex (NbU1-70K). Notably, PsFYVE1 disrupted NbRZ-1A-NbGRP7 interaction. RNA-seq and subsequent experimental analysis demonstrated that PsFYVE1 and NbRZ-1A not only modulated pre-mRNA alternative splicing (AS) of the necrotic spotted lesions 1 (NbNSL1) gene, but also co-regulated transcription of hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (NbHCT), ethylene insensitive 2 (NbEIN2), and sucrose synthase 4 (NbSUS4) genes, which participate in plant immunity. Collectively, these findings indicate that the FYVE domain-containing protein family includes potential uncharacterized effector types and also highlight that plant pathogen effectors can regulate plant immunity-related genes at both AS and transcription levels to promote disease.


Assuntos
Phytophthora , Phytophthora/fisiologia , Proteínas/genética , Glycine max/metabolismo , Expressão Gênica , Glicina/metabolismo , Doenças das Plantas/genética
7.
Pest Manag Sci ; 79(1): 349-356, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36153708

RESUMO

BACKGROUND: The lack of novel fungicide and appearance of resistance are the most emergent problems in the control of Phytophthora diseases. Plant immunity elicitors that induce systemic resistance in plants are regarded as the new strategy for plant disease control. Streptomyces can produce a variety of bioactive natural products, which are important resources for lead compounds of plant immunity elicitors. RESULTS: A novel peptidendrocin C (1) together with the known analog peptidendrocin B (2) were isolated from Streptomyces pseudovenezuelae NA07424. Their structures were confirmed by spectroscopic data and Marfey's reaction. In bioactive assays, compound 1 played an important role in inducing systemic resistance of Nicotiana benthamiana against Phytophthora capsici growth, with a 90.5% inhibition ratio at 400 µg/mL, while compound 2 showed moderate activity, inhibiting P. capsici growth by a 50.8% decrease at 400 µg/mL. Simultaneously, two compounds promoted enhanced expression of the PR1 gene and callose accumulation in N. benthamiana and Arabidopsis thaliana. In this paper, we also provide the first insights into their biosynthesis by confirming their biosynthesis gene cluster and related functional genes. CONCLUSION: Our findings show that 1 and 2 have the potential to be used as lead compounds for development of new plant immunity elicitors to control Phytophthora diseases. The study of the biosynthesis pathway lays the groundwork for further application of the bioactive natural products. © 2022 Society of Chemical Industry.


Assuntos
Produtos Biológicos , Phytophthora , Streptomyces , Streptomyces/genética
8.
J Agric Food Chem ; 70(51): 16135-16145, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36528808

RESUMO

The mycoparasite Pythium oligandrum is a nonpathogenic oomycete that can boost plant immune responses. Elicitins are microbe-associated molecular patterns (MAMPs) specifically produced by oomycetes that activate plant defense. Here, we identified a novel elicitin, PoEli8, from P. oligandrum that exhibits immunity-inducing activity in plants. In vitro-purified PoEli8 induced strong innate immune responses and enhanced resistance to the oomycete pathogen Phytophthora capsici in Solanaceae plants, including Nicotiana benthamiana, tomato, and pepper. Cell death and reactive oxygen species (ROS) accumulation triggered by the PoEli8 protein were dependent on the plant coreceptors receptor-like kinases (RLKs) BAK1 and SOBIR1. Furthermore, REli from N. benthamiana, a cell surface receptor-like protein (RLP) was implicated in the perception of PoEli8 in N. benthamiana. These results indicate the potential value of PoEli8 as a bioactive formula to protect Solanaceae plants against Phytophthora.


Assuntos
Phytophthora , Pythium , Solanaceae , Phytophthora/fisiologia , Pythium/fisiologia , Resistência à Doença , Plantas , Nicotiana , Doenças das Plantas/parasitologia
9.
Mol Plant Pathol ; 23(12): 1721-1736, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36193624

RESUMO

The oomycete pathogen Phytophthora capsici encodes hundreds of RXLR effectors that enter the plant cells and suppress host immunity. Only a few of these genes are conserved across different strains and species. Such core effectors might target hub genes and immune pathways in hosts. Here, we describe the functional characterization of the core P. capsici RXLR effector RXLR242. The expression of RXLR242 was up-regulated during infection, and its ectopic expression in Nicotiana benthamiana, an experimental plant host, further promoted Phytophthora infection. RXLR242 physically interacted with a group of RAB proteins that belong to the small GTPase family and play a role in regulating transport pathways in the intracellular membrane trafficking system. In addition, RXLR242 impeded the secretion of PATHOGENESIS-RELATED 1 (PR1) protein to the apoplast. This phenomenon resulted from the competitive binding of RXLR242 to RABE1-7. We also found that RXLR242 interfered with the association between RABA4-3 and its binding protein, thereby disrupting the trafficking of the membrane receptor FLAGELLIN-SENSING 2. Thus, RXLR242 manipulates plant immunity by targeting RAB proteins and disrupting protein trafficking in the host plants.


Assuntos
Phytophthora infestans , Phytophthora infestans/metabolismo , Imunidade Vegetal/genética , Doenças das Plantas , Proteínas/metabolismo , Plantas/metabolismo , Transporte Proteico
10.
Plant J ; 108(1): 67-80, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34374485

RESUMO

Plants deploy various immune receptors to recognize pathogen-derived extracellular signals and subsequently activate the downstream defense response. Recently, increasing evidence indicates that the endoplasmic reticulum (ER) plays a part in the plant defense response, known as ER stress-mediated immunity (ERSI), that halts pathogen infection. However, the mechanism for the ER stress response to signals of pathogen infection remains unclear. Here, we characterized the ER stress response regulator NAC089, which was previously reported to positively regulate programed cell death (PCD), functioning as an ERSI regulator. NAC089 translocated from the ER to the nucleus via the Golgi in response to Phytophthora capsici culture filtrate (CF), which is a mixture of pathogen-associated molecular patterns (PAMPs). Plasma membrane localized co-receptor BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 (BAK1) was required for the CF-mediated translocation of NAC089. The nuclear localization of NAC089, determined by the NAC domain, was essential for immune activation and PCD. Furthermore, NAC089 positively contributed to host resistance against the oomycete pathogen P. capsici and the bacteria pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. We also proved that NAC089-mediated immunity is conserved in Nicotiana benthamiana. Together, we found that PAMP signaling induces the activation of ER stress in plants, and that NAC089 is required for ERSI and plant resistance against pathogens.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Phytophthora/fisiologia , Doenças das Plantas/imunologia , Imunidade Vegetal , Pseudomonas syringae/fisiologia , Fatores de Transcrição/metabolismo , Apoptose , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Resistência à Doença , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Complexo de Golgi/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Doenças das Plantas/microbiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/microbiologia , Fatores de Transcrição/genética
11.
J Fungi (Basel) ; 7(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206578

RESUMO

As a non-pathogenic oomycete, the biocontrol agent Pythium oligandrum is able to control plant diseases through direct mycoparasite activity and boosting plant immune responses. Several P. oligandrum elicitors have been found to activate plant immunity as microbe-associated molecular patterns (MAMPs). Necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) are a group of MAMPs widely distributed in eukaryotic and prokaryotic plant pathogens. However, little is known about their distribution and functions in P. oligandrum and its sister species Pythium periplocum. Here, we identified a total of 25 NLPs from P. oligandrum (PyolNLPs) and P. periplocum (PypeNLPs). Meanwhile, we found that PyolNLPs/PypeNLPs genes cluster in two chromosomal segments, and our analysis suggests that they expand by duplication and share a common origin totally different from that of pathogenic oomycetes. Nine PyolNLPs/PypeNLPs induced necrosis in Nicotiana benthamiana by agroinfiltration. Eight partially purified PyolNLPs/PypeNLPs were tested for their potential biocontrol activity. PyolNLP5 and PyolNLP7 showed necrosis-inducing activity in N. benthamiana via direct protein infiltration. At sufficient concentrations, they both significantly reduced disease severity and suppressed the in planta growth of Phytophthora capsici in solanaceous plants including N. benthamiana (tobacco), Solanum lycopersicum (tomato) and Capsicum annuum (pepper). Our assays suggest that the Phytophthora suppression effect of PyolNLP5 and PyolNLP7 is irrelevant to reactive oxygen species (ROS) accumulation. Instead, they induce the expression of antimicrobial plant defensin genes, and the induction depends on their conserved nlp24-like peptide pattern. This work demonstrates the biocontrol role of two P. oligandrum NLPs for solanaceous plants, which uncovers a novel approach of utilizing NLPs to develop bioactive formulae for oomycete pathogen control with no ROS-caused injury to plants.

12.
New Phytol ; 232(2): 802-817, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34260062

RESUMO

Vitellogenin (Vg) is a well-known nutritious protein involved in reproduction in nearly all oviparous animals, including insects. Recently, Vg has been detected in saliva proteomes of several piercing-sucking herbivorous arthropods, including the small brown planthopper (Laodelphax striatellus, SBPH). Its function, however, remains unexplored. We investigated the molecular mechanism underlying SBPH orally secreted Vg-mediated manipulation of plant-insect interaction by RNA interference, phytohormone and H2 O2 profiling, protein-protein interaction studies and herbivore bioassays. A C-terminal polypeptide of Vg (VgC) in SBPH, when secreted into rice plants, acted as a novel effector to attenuate host rice defenses, which in turn improved insect feeding performance. Silencing Vg reduced insect feeding and survival on rice. Vg-silenced SBPH nymphs consistently elicited higher H2 O2 production, a well-established defense mechanism in rice, whereas expression of VgC in planta significantly hindered hydrogen peroxide (H2 O2 ) accumulation and promoted insect performance. VgC interacted directly with the rice transcription factor OsWRKY71, a protein which is involved in induction of H2 O2 accumulation and plant resistance to SBPH. These findings indicate a novel effector function of Vg: when secreted into host rice plants, this protein effectively weakened H2 O2 -mediated plant defense through its association with a plant immunity regulator.


Assuntos
Líquidos Corporais , Hemípteros , Oryza , Animais , Oryza/genética , Interferência de RNA , Vitelogeninas
13.
Angew Chem Int Ed Engl ; 60(40): 21934-21942, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34291549

RESUMO

Ethylene (ET) is an important gaseous plant hormone. It is highly desirable to develop fluorescent probes for monitoring ethylene in living cells. We report an efficient RhIII -catalysed coupling of N-phenoxyacetamides to ethylene in the presence of an alcohol. The newly discovered coupling reaction exhibited a wide scope of N-phenoxyacetamides and excellent regioselectivity. We successfully developed three fluorophore-tagged RhIII -based fluorogenic coumarin-ethylene probes (CEPs) using this strategy for the selective and quantitative detection of ethylene. CEP-1 exhibited the highest sensitivity with a limit of detection of ethylene at 52 ppb in air. Furthermore, CEP-1 was successfully applied for imaging in living CHO-K1 cells and for monitoring endogenous-induced changes in ethylene biosynthesis in tobacco and Arabidopsis thaliana plants. These results indicate that CEP-1 has great potential to illuminate the spatiotemporal regulation of ethylene biosynthesis and ethylene signal transduction in living biological systems.


Assuntos
Arabidopsis/química , Etilenos/análise , Corantes Fluorescentes/química , Animais , Células CHO , Cricetulus , Estrutura Molecular
14.
Mol Plant ; 14(8): 1391-1403, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-33965632

RESUMO

Phytophthora pathogens are a persistent threat to the world's commercially important agricultural crops, including potato and soybean. Current strategies aim at reducing crop losses rely mostly on disease-resistance breeding and chemical pesticides, which can be frequently overcome by the rapid adaptive evolution of pathogens. Transgenic crops with intrinsic disease resistance offer a promising alternative and continue to be developed. Here, we explored Phytophthora-derived PI3P (phosphatidylinositol 3-phosphate) as a novel control target, using proteins that bind this lipid to direct secreted anti-microbial peptides and proteins (AMPs) to the surface of Phytophthora pathogens. In transgenic Nicotiana benthamiana, soybean, and potato plants, significantly enhanced resistance to different pathogen isolates was achieved by expression of two AMPs (GAFP1 or GAFP3 from the Chinese medicinal herb Gastrodia elata) fused with a PI3P-specific binding domain (FYVE). Using the soybean pathogen P. sojae as an example, we demonstrated that the FYVE domain could boost the activities of GAFPs in multiple independent assays, including those performed in vitro, in vivo, and in planta. Mutational analysis of P. sojae PI3K1 and PI3K2 genes of this pathogen confirmed that the enhanced activities of the targeted GAFPs were correlated with PI3P levels in the pathogen. Collectively, our study provides a new strategy that could be used to confer resistance not only to Phytophthora pathogens in many plants but also potentially to many other kinds of plant pathogens with unique targets.


Assuntos
Resistência à Doença , Glycine max/parasitologia , Phytophthora/patogenicidade , Doenças das Plantas/parasitologia , Proteínas de Plantas/metabolismo , Solanum tuberosum/parasitologia , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Parasita/genética , Hifas/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/parasitologia , Solanum tuberosum/genética , Solanum tuberosum/crescimento & desenvolvimento , Glycine max/genética , Glycine max/crescimento & desenvolvimento
15.
PLoS Pathog ; 17(3): e1009388, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33711077

RESUMO

Phytophthora genomes encode a myriad of Crinkler (CRN) effectors, some of which contain putative kinase domains. Little is known about the host targets of these kinase-domain-containing CRNs and their infection-promoting mechanisms. Here, we report the host target and functional mechanism of a conserved kinase CRN effector named CRN78 in a notorious oomycete pathogen, Phytophthora sojae. CRN78 promotes Phytophthora capsici infection in Nicotiana benthamiana and enhances P. sojae virulence on the host plant Glycine max by inhibiting plant H2O2 accumulation and immunity-related gene expression. Further investigation reveals that CRN78 interacts with PIP2-family aquaporin proteins including NbPIP2;2 from N. benthamiana and GmPIP2-13 from soybean on the plant plasma membrane, and membrane localization is necessary for virulence of CRN78. Next, CRN78 promotes phosphorylation of NbPIP2;2 or GmPIP2-13 using its kinase domain in vivo, leading to their subsequent protein degradation in a 26S-dependent pathway. Our data also demonstrates that NbPIP2;2 acts as a H2O2 transporter to positively regulate plant immunity and reactive oxygen species (ROS) accumulation. Phylogenetic analysis suggests that the phosphorylation sites of PIP2 proteins and the kinase domains of CRN78 homologs are highly conserved among higher plants and oomycete pathogens, respectively. Therefore, this study elucidates a conserved and novel pathway used by effector proteins to inhibit host cellular defenses by targeting and hijacking phosphorylation of plant aquaporin proteins.


Assuntos
Phytophthora/patogenicidade , Doenças das Plantas/imunologia , Imunidade Vegetal/fisiologia , Proteínas de Plantas/metabolismo , Fatores de Virulência/metabolismo , Fosforilação , Transdução de Sinais/fisiologia
16.
Int J Biol Macromol ; 165(Pt B): 2660-2667, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33096175

RESUMO

Rod-like nanochitin (NC) whisker with cationic nature has a strong synergistic effect with fungicides on inhibition of tobacco root rot disease. This study we explored the activity of NC against Phytophthora and the mechanism for eliciting plant defense response and the receptors in planta. P. capsici isolates, model Nicotiana benthamiana plants and Arabidopsis thaliana were treated with 0.005% of NC suspension and 1 µM of flg22. Infection control efficacy against P. capsici isolates, biosynthetic enzyme activities and the PR genes expression were determined at different hours post treatment in plant. The infection control efficacy, ROS generation, and PTI maker gene expression were re-analyzed in A. thaliana Col-0, bak1 and cerk1 mutants. The results showed that NC did not exhibit inhibitory effect on vegetative growth of P. capsici, but enhanced the resistance against P. capsici by systemically enhanced phenylalanine ammonia-lyase activity and PR gene expression. P. capsici resistance, PTI maker gene promotion, and ROS production in A. thaliana induced by NC depended not only on chitin receptor CERK1, but also BAK1. NC and flg22 induced oomycete immunity through a mechanism of a cross-microbe protection via the BAK1-CERK1 pathway in plant, pointing to the complexity of the plant immunity system.


Assuntos
Quitina/química , Phytophthora/patogenicidade , Imunidade Vegetal/genética , Vibrissas/química , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Quitina/farmacologia , Resistência à Doença/imunologia , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nanocompostos/química , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Imunidade Vegetal/efeitos dos fármacos , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
17.
Mol Plant Microbe Interact ; 33(8): 1046-1058, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32330072

RESUMO

RXLR effectors, a class of secreted proteins that are transferred into host cells to manipulate host immunity, have been reported to widely exist in oomycetes, including those from genera Phytophthora, Hyaloperonospora, Albugo, and Saprolegnia. However, in Pythium species, no RXLR effector has yet been characterized, and the origin and evolution of such virulent effectors are still unknown. Here, we developed a modified regular expression method for de novo identification of RXLRs and characterized 359 putative RXLR effectors in nine Pythium species. Phylogenetic analysis revealed that all oomycetous RXLRs formed a single superfamily, suggesting that they might have a common ancestor. RXLR effectors from Pythium and Phytophthora species exhibited similar sequence features, protein structures, and genome locations. In particular, there were significantly more RXLR proteins in the mosquito biological control agent P. guiyangense than in the other eight Pythium species, and P. guiyangense RXLRs might be the result of gene duplication and genome rearrangement events, as indicated by synteny analysis. Expression pattern analysis of RXLR-encoding genes in the plant pathogen P. ultimum detected transcripts of the majority of the predicted RXLR genes, with some RXLR effectors induced in infection stages and one RXLR showing necrosis-inducing activity. Furthermore, all predicted RXLR genes were cloned from two biocontrol agents, P. oligandrum and P. periplocum, and three of the RXLR genes were found to induce a defense response in Nicotiana benthamiana. Taken together, our findings represent the first evidence of RXLR effectors in Pythium species, providing valuable information on their evolutionary patterns and the mechanisms of their interactions with diverse hosts.


Assuntos
Família Multigênica , Pythium/genética , Genoma , Filogenia , Phytophthora , Pythium/patogenicidade , Sintenia
18.
Mol Plant ; 12(4): 565-581, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30703564

RESUMO

Reactive oxygen species (ROS) play a vital role in plant immune response, but the genes involved in the regulation of ROS are scantily reported. Phytophthora pathogens produce a large number of effectors to promote infection, but the modes of action adopted are largely unknown. Here, we report that RxLR207 could activate ROS-mediated cell death in Nicotiana benthamiana and was essential for virulence of P. capsici. We found that this effector targeted BPA1 (binding partner of ACD11) and four members of BPLs (BPA1-Like proteins) in Arabidopsis, and the bpa1 and bpl mutants had enhanced ROS accumulation and cell death under biotic or abiotic stresses. Furthermore, we showed that BPA1 and several BPLs functioned redundantly in plant immunity to P. capsici. We discovered that BPA1 and all six BPLs interacted with ACD11, and stabilization of ACD11 was impaired in the bpa1, bpl2, bpl3, and bpl4 mutants. RxLR207 could promote the degradation of BPA1, BPL1, BPL2, and BPL4 to disrupt ACD11 stabilization in a 26S proteasome-dependent manner. Taken together, these findings indicate the important roles of Arabidopsis BPA1 and its homologs in ROS homeostasis and defense response, highlighting the usefulness of a pathogen effector-directed approach as a promising strategy for the discovery of novel plant immune regulators.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Membrana Transportadoras/metabolismo , Phytophthora/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Virulência/metabolismo , Proteínas Reguladoras de Apoptose/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Membrana Transportadoras/genética , Mutação , Phytophthora/metabolismo , Imunidade Vegetal , Ligação Proteica
19.
Front Plant Sci ; 10: 107, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30800138

RESUMO

Initially identified as a mammalian apoptosis suppressor, defender against apoptotic death 1 (DAD1) protein has conserved plant orthologs acting as negative regulators of cell death. The potential roles and action mechanisms of plant DADs in resistance against Phytophthora pathogens are still unknown. Here, we cloned GmDAD1 from soybean and performed functional dissection. GmDAD1 expression can be induced by Phytophthora sojae infection in both compatible and incompatible soybean varieties. By manipulating GmDAD1 expression in soybean hairy roots, we showed that GmDAD1 transcript accumulations are positively correlated with plant resistance levels against P. sojae. Heterologous expression of GmDAD1 in Nicotiana benthamiana enhanced its resistance to Phytophthora parasitica. NbDAD1 from N. benthamiana was shown to have similar role in conferring Phytophthora resistance. As an endoplasmic reticulum (ER)-localized protein, GmDAD1 was demonstrated to be involved in ER stress signaling and to affect the expression of multiple defense-related genes. Taken together, our findings reveal that GmDAD1 plays a critical role in defense against Phytophthora pathogens and might participate in the ER stress signaling pathway. The defense-associated characteristic of GmDAD1 makes it a valuable working target for breeding Phytophthora resistant soybean varieties.

20.
New Phytol ; 222(1): 425-437, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30394556

RESUMO

Phytophthora pathogens secrete many effector proteins to manipulate host innate immunity. PsAvh238 is a Phytophthora sojae N-terminal Arg-X-Leu-Arg (RXLR) effector, which evolved to escape host recognition by mutating one nucleotide while retaining plant immunity-suppressing activity to enhance infection. However, the molecular basis of the PsAvh238 virulence function remains largely enigmatic. By using coimmunoprecipitation and liquid chromatography-tandem mass spectrometry analysis, we identified the 1-aminocyclopropane-1-carboxylate synthase (ACS) isoforms, the key enzymes in ethylene (ET) biosynthesis, as a host target of PsAvh238. We show that PsAvh238 interacts with soybean ACSs (GmACSs) in vivo and in vitro. By destabilizing Type2 GmACSs, PsAvh238 suppresses Type2 ACS-catalyzed ET biosynthesis and facilitates Phytophthora infection. Silencing of Type2 GmACSs, and inhibition of ET biosynthesis or signaling, increase soybean susceptibility to P. sojae infection, supporting a role for Type2 GmACSs and ET in plant immunity against P. sojae. Moreover, wild-type P. sojae but not the PsAvh238-disrupted mutants, inhibits ET induction and promotes P. sojae infection in soybean. Our results highlight the ET biosynthesis pathway as an essential part in plant immunity against P. sojae and a direct effector target.


Assuntos
Etilenos/metabolismo , Glycine max/metabolismo , Glycine max/microbiologia , Liases/metabolismo , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Proteínas/metabolismo , Resistência à Doença , Estabilidade Enzimática , Inativação Gênica , Mutação/genética , Plantas Geneticamente Modificadas , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Glycine max/imunologia , Nicotiana/genética , Nicotiana/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA