Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 450: 139326, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38615530

RESUMO

Although nanozymes sensor arrays have the potential to recognize multiple target substances simultaneously, they currently rarely identify phenolic acids in food due to limited catalytic performance and complex preparation conditions of nanozymes. Here, inspired by the structure of polyphenol oxidase, we have successfully prepared a novel gallic acid-Cu (GA-Cu) nanozyme with laccase-like activity. Due to the different catalytic efficiency of GA-Cu nanozymes towards six common phenolic acids, a three-channel colorimetric sensor array was constructed using reaction kinetics as the sensing unit to achieve high-throughput detection and identification of six phenolic acids within a concentration range from 1 to 100 µM. This method avoids the creation of numerous sensing units. Notably, the successful discrimination of six phenolic acids in samples of juice, beer, and wine has been achieved by the sensor array. Finally, aided by smartphones, a portable technique has been devised for the detection of phenolic acids.


Assuntos
Colorimetria , Ácido Gálico , Hidroxibenzoatos , Vinho , Hidroxibenzoatos/química , Hidroxibenzoatos/análise , Colorimetria/métodos , Vinho/análise , Ácido Gálico/química , Ácido Gálico/análise , Cerveja/análise , Cobre/química , Cobre/análise , Sucos de Frutas e Vegetais/análise , Catálise , Nanoestruturas/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Análise de Alimentos/instrumentação , Análise de Alimentos/métodos
2.
Anal Chim Acta ; 1287: 342133, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182397

RESUMO

Although the research on nanozymes has attracted widespread attention in recent years, the development of highly active and multifunctional nanozymes remains a challenge. Here, a bifunctional AMP-Cu nanozyme with laccase- and catecholase-like activities was successfully prepared at room temperature with Cu2+ as the metal ion and adenosine-5'-monophosphate (AMP) as the ligand molecule. Based on the excellent catalytic performance of AMP-Cu, a three-channel colorimetric sensor array was constructed using reaction kinetics as the sensing unit to achieve high-throughput detection and identification of six common phenolic compounds at low concentrations. This strategy simplifies the construction of sensor array and demonstrates the capacity to obtain multidimensional data from a single material. Finally, with the assistance of smartphones and homemade dark boxes, a portable on-site detection method for phenolic compounds was developed. This work would contribute to the development of portable sensors and the highly efficient identification of phenolic compounds in complex samples.


Assuntos
Colorimetria , Smartphone , Catálise , Cinética , Lacase , Fenóis
3.
Acta Biomater ; 167: 374-386, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37343908

RESUMO

The solid tumors are characterized with oxidative stress and metabolic reprogramming, which has been independently used for targeted tumor monotherapy. However, the potential of targeting metabolism-redox circuit in tumor therapy has long been neglected. Herein, we report a hybrid nanocarrier for concurrent targeting of glycolysis and redox balance in the current work. The nanocarriers are made of pH- and ATP-responsive zeolitic imidazolate framework (ZIF-8) as the porous core that was further coated with poloxamer 407 as the steric stabilizer. Two active cargos, glucose oxidase (GOx) and 3-bromopyruvate (3-BrPA) were co-loaded in the core of nanocarrier. GOx is well-known for its ability of producing hydrogen peroxide at the expense of glucose and oxygen. 3-BrPA can reduce oxygen and glucose consumption through glycolysis, which sensitized cancer cells to GOx-induced apoptosis. At the cellular level, the hybrid nanocarrier significantly impaired the redox balance in the liver hepatocellular carcinoma cell line (HepG2), as evidenced by the depletion of glutathione and boost of reactive oxygen species. The potency of hybrid nanocarrier in terms of suppressing HepG2 cell energy metabolism was proven by the exhaustion of ATP. As a consequence, cell viability was greatly reduced. The in vivo efficacy of hybrid nanocarriers was demonstrated in HepG2 tumor-bearing mice. The current work presents an approach of targeting metabolism-redox circuit for tumor treatment, which may enrich the available anti-tumor strategies. STATEMENT OF SIGNIFICANCE: Metabolic alterations and elevated reactive oxygen species (ROS) are two characteristics of cancer. The metabolic patterns of cancer cells are elaborately reprogrammed to enable the rapid propagation of cancer cells. However, the potential of targeting the metabolism-redox circuit in anti-tumor therapy has long been neglected. As a proof-of-concept, we report an engineered stimuli-responsive nanomedicine that can eradicate cancer cells via cooperative glycolysis inhibition and redox impairment. The current work presents an approach of targeting the metabolism-redox circuit for tumor treatment, which may enrich the available anti-tumor strategies.


Assuntos
Nanomedicina , Neoplasias , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/patologia , Oxirredução , Glicólise , Oxigênio , Trifosfato de Adenosina/metabolismo , Homeostase , Glucose , Linhagem Celular Tumoral
4.
Analyst ; 146(1): 207-212, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33089838

RESUMO

Identifying the species and concentrations of antioxidants is really important because antioxidants play important roles in various biological processes and numerous diseases. Compared with an individual sensor detecting a single antioxidant with limited specificity, a sensor array could simultaneously identify various antioxidants, in which 3-5 types of nanomaterials with peroxidase-like activity are absolutely necessary. Herein, as a single-atom nanozyme, Fe-N/C with oxidase-mimicking activity was applied to construct a triple-channel colorimetric sensor array: (1) Fe-N/C catalytically oxidized three substrates 3,3',5,5'-tetramethylbenzidine (TMB), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and o-phenylenediamine (OPD) to produce blue oxidized TMB (oxTMB), green oxidized ABTS (oxABTS) and yellow oxidized OPD (oxOPD), respectively; (2) with oxTMB, oxABTS and oxOPD as three sensing channels, a colorimetric sensor array was constructed for simultaneously discriminating glutathione (GSH), l-cysteine (l-Cys), ascorbic acid (AA), uric acid (UA), and melatonin (MT), even quantifying concentrations (with GSH as a model analyst). The performance of the sensor array was validated through accurately identifying 15 blind samples containing GSH, l-Cys, AA, UA and MT in buffer solution and human serum samples, and also in binary and ternary mixtures. This work proved that fabricating a single nanozyme-based sensor array was a simplified and reliable strategy for simultaneously probing multiple antioxidants.


Assuntos
Antioxidantes , Colorimetria , Ácido Ascórbico , Glutationa , Humanos , Oxirredução
5.
Mikrochim Acta ; 185(6): 298, 2018 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-29754164

RESUMO

A time-resolved phosphorescence (TRP) is applied to the highly sensitive determination of Fe(II) ions. The method is based on the use of a phosphorescent probe consisting of cysteine-bridged Mn-doped ZnS quantum dots (Mn/ZnS QDs). The presence of cysteine enhances the phosphorescence of the QDs and also increases the efficiency of quenching caused by Fe(II) ions. This results in strongly improved selectivity for Fe(II). The linear response is obtained in the concentration range of 50-1000 nM with a 19 nM detection limit. Phosphorescence is recorded at excitation/emission peaks of 301/602 nm. The interference of short-lived fluorescent and scattering background from the biological fluids is eliminated by using the TRP mode with a delay time of 200 µs. The determination of Fe(II) in human serum samples spiked at a 150 nM level gave a 92.4% recovery when using the TRP mode, but only 52.4% when using steady-state phosphorescence. This demonstrates that this probe along with TRP detection enables highly sensitive and accurate determination of Fe(II) in serum. Graphical abstract Schematic of a novel phosphorescent method for the detection of Fe2+ ions based on cysteine-bridged Mn-doped ZnS quantum dots. The sensitivity of this assay greatly increases due to the addition of cysteine. Interferences by short-lived auto-fluorescence and the scattering light from the biological fluids is eliminated by using time-resolved phosphorescence mode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA