Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(8): e105222, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25141257

RESUMO

PA-824 is a bicyclic 4-nitroimidazole, currently in phase II clinical trials for the treatment of tuberculosis. Dose fractionation pharmacokinetic-pharmacodynamic studies in mice indicated that the driver of PA-824 in vivo efficacy is the time during which the free drug concentrations in plasma are above the MIC (fT>MIC). In this study, a panel of closely related potent bicyclic 4-nitroimidazoles was profiled in both in vivo PK and efficacy studies. In an established murine TB model, the efficacy of diverse nitroimidazole analogs ranged between 0.5 and 2.3 log CFU reduction compared to untreated controls. Further, a retrospective analysis was performed for a set of seven nitroimidazole analogs to identify the PK parameters that correlate with in vivo efficacy. Our findings show that the in vivo efficacy of bicyclic 4-nitroimidazoles correlated better with lung PK than with plasma PK. Further, nitroimidazole analogs with moderate-to-high volume of distribution and Lung to plasma ratios of >2 showed good efficacy. Among all the PK-PD indices, total lung T>MIC correlated the best with in vivo efficacy (rs = 0.88) followed by lung Cmax/MIC and AUC/MIC. Thus, lung drug distribution studies could potentially be exploited to guide the selection of compounds for efficacy studies, thereby accelerating the drug discovery efforts in finding new nitroimidazole analogs.


Assuntos
Nitroimidazóis/farmacologia , Nitroimidazóis/farmacocinética , Tuberculose/tratamento farmacológico , Animais , Células CACO-2 , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Estudos Retrospectivos
2.
Nat Med ; 19(9): 1157-60, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23913123

RESUMO

New therapeutic strategies are needed to combat the tuberculosis pandemic and the spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) forms of the disease, which remain a serious public health challenge worldwide. The most urgent clinical need is to discover potent agents capable of reducing the duration of MDR and XDR tuberculosis therapy with a success rate comparable to that of current therapies for drug-susceptible tuberculosis. The last decade has seen the discovery of new agent classes for the management of tuberculosis, several of which are currently in clinical trials. However, given the high attrition rate of drug candidates during clinical development and the emergence of drug resistance, the discovery of additional clinical candidates is clearly needed. Here, we report on a promising class of imidazopyridine amide (IPA) compounds that block Mycobacterium tuberculosis growth by targeting the respiratory cytochrome bc1 complex. The optimized IPA compound Q203 inhibited the growth of MDR and XDR M. tuberculosis clinical isolates in culture broth medium in the low nanomolar range and was efficacious in a mouse model of tuberculosis at a dose less than 1 mg per kg body weight, which highlights the potency of this compound. In addition, Q203 displays pharmacokinetic and safety profiles compatible with once-daily dosing. Together, our data indicate that Q203 is a promising new clinical candidate for the treatment of tuberculosis.


Assuntos
Trifosfato de Adenosina/biossíntese , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Imidazóis/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Piperidinas/farmacologia , Piridinas/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Complexo III da Cadeia de Transporte de Elétrons/genética , Imidazóis/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Piperidinas/farmacocinética , Piridinas/farmacocinética , Ratos , Ratos Sprague-Dawley
3.
Nat Commun ; 1: 57, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20975714

RESUMO

Candidate antibacterials are usually identified on the basis of their in vitro activity. However, the apparent inhibitory activity of new leads can be misleading because most culture media do not reproduce an environment relevant to infection in vivo. In this study, while screening for novel anti-tuberculars, we uncovered how carbon metabolism can affect antimicrobial activity. Novel pyrimidine-imidazoles (PIs) were identified in a whole-cell screen against Mycobacterium tuberculosis. Lead optimization generated in vitro potent derivatives with desirable pharmacokinetic properties, yet without in vivo efficacy. Mechanism of action studies linked the PI activity to glycerol metabolism, which is not relevant for M. tuberculosis during infection. PIs induced self-poisoning of M. tuberculosis by promoting the accumulation of glycerol phosphate and rapid ATP depletion. This study underlines the importance of understanding central bacterial metabolism in vivo and of developing predictive in vitro culture conditions as a prerequisite for the rational discovery of new antibiotics.


Assuntos
Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Trifosfato de Adenosina/metabolismo , Antituberculosos/farmacologia , Glicerofosfatos/metabolismo , Imidazóis/farmacologia , Modelos Biológicos
4.
J Biol Chem ; 280(31): 28766-74, 2005 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-15932883

RESUMO

Regulated proteolysis by the two-component NS2B/NS3 protease of dengue virus is essential for virus replication and the maturation of infectious virions. The functional similarity between the NS2B/NS3 proteases from the four genetically and antigenically distinct serotypes was addressed by characterizing the differences in their substrate specificity using tetrapeptide and octapeptide libraries in a positional scanning format, each containing 130,321 substrates. The proteases from different serotypes were shown to be functionally homologous based on the similarity of their substrate cleavage preferences. A strong preference for basic amino acid residues (Arg/Lys) at the P1 positions was observed, whereas the preferences for the P2-4 sites were in the order of Arg > Thr > Gln/Asn/Lys for P2, Lys > Arg > Asn for P3, and Nle > Leu > Lys > Xaa for P4. The prime site substrate specificity was for small and polar amino acids in P1' and P3'. In contrast, the P2' and P4' substrate positions showed minimal activity. The influence of the P2 and P3 amino acids on ground state binding and the P4 position for transition state stabilization was identified through single substrate kinetics with optimal and suboptimal substrate sequences. The specificities observed for dengue NS2B/NS3 have features in common with the physiological cleavage sites in the dengue polyprotein; however, all sites reveal previously unrecognized suboptimal sequences.


Assuntos
Vírus da Dengue/genética , Perfilação da Expressão Gênica , Serina Endopeptidases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA , Vírus da Dengue/classificação , Dados de Sequência Molecular , Oligopeptídeos/metabolismo , Biblioteca de Peptídeos , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina Endopeptidases/genética , Sorotipagem , Especificidade por Substrato
5.
Bioorg Med Chem Lett ; 14(16): 4203-6, 2004 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-15261270

RESUMO

The introduction of copper chelates into peptide mimetics creates the Src SH2 binding ligands and paramagnetic complexes suitable for EPR studies of peptide protein interactions. The dipicolinic acid was attached to SH2 domain targeting fragments by two different linkers.


Assuntos
Cobre/química , Peptídeos/metabolismo , Ácidos Picolínicos/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Espectroscopia de Ressonância Magnética , Mimetismo Molecular , Peptídeos/química , Ácidos Picolínicos/química , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA