Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Virol ; 95(8): e29041, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37621182

RESUMO

The emerging outbreak of monkeypox is closely associated with the viral infection and spreading, threatening global public health. Virus-induced cell migration facilitates viral transmission. However, the mechanism underlying this type of cell migration remains unclear. Here we investigate the motility of cells infected by vaccinia virus (VACV), a close relative of monkeypox, through combining multi-omics analyses and high-resolution live-cell imaging. We find that, upon VACV infection, the epithelial cells undergo epithelial-mesenchymal transition-like transformation, during which they lose intercellular junctions and acquire the migratory capacity to promote viral spreading. After transformation, VACV-hijacked RhoA signaling significantly alters cellular morphology and rearranges the actin cytoskeleton involving the depolymerization of robust actin stress fibers, leading-edge protrusion formation, and the rear-edge recontraction, which coordinates VACV-induced cell migration. Our study reveals how poxviruses alter the epithelial phenotype and regulate RhoA signaling to induce fast migration, providing a unique perspective to understand the pathogenesis of poxviruses.


Assuntos
Mpox , Vaccinia virus , Humanos , Movimento Celular , Surtos de Doenças , Células Epiteliais
2.
Nano Lett ; 23(14): 6727-6735, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37459599

RESUMO

Cell migration occurs in confined microenvironments, which plays a vital role in the process of tumor metastasis. However, it is challenging to study their behaviors in vivo. Here we developed a cell squeeze system that can be scaled down to micrometers to mimic native physical confined microenvironments, wherein degrees of surface adhesion and mechanical constraints could be manipulated in order to investigate cell-migrating behaviors. Based on the microscale cell squeeze system, we found the synergistic role of lamin A/C and vimentin in cell transition and migration under strong confinement. The dynamic variations in lamin A/C and vimentin expression establish a positive feedback loop in response to confinement, effectively promoting amoeboid migration by modulating nuclear deformability while ensuring cell viability. This work shed light on modulating cell response to microenvironments by altering the expression of lamin A/C and/or vimentin, which may be a more efficient way of inhibiting cancer metastasis.


Assuntos
Movimento Celular , Lamina Tipo A , Núcleo Celular/metabolismo , Filamentos Intermediários , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Vimentina/metabolismo , Humanos , Células HeLa
3.
Bioessays ; 45(8): e2200225, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37254735

RESUMO

During immune responses against invading pathogenic bacteria, the cytoskeleton network enables macrophages to implement multiple essential functions. To protect the host from infection, macrophages initially polarize to adopt different phenotypes in response to distinct signals from the microenvironment. The extracellular stimulus regulates the rearrangement of the cytoskeleton, thereby altering the morphology and migratory properties of macrophages. Subsequently, macrophages degrade the extracellular matrix (ECM) and migrate toward the sites of infection to directly contact invading pathogens, during which the involvement of cytoskeleton-based structures such as podosomes and lamellipodia is indispensable. Ultimately, macrophages execute the function of phagocytosis to engulf and eliminate the invading pathogens. Phagocytosis is a complex process that requires the cooperation of cytoskeleton-enriched super-structures, such as filopodia, lamellipodia, and phagocytic cup. This review presents an overview of cytoskeletal regulations in macrophage polarization, ECM degradation, migration, and phagocytosis, highlighting the pivotal role of the cytoskeleton in host defense against infection.


Assuntos
Citoesqueleto , Macrófagos , Macrófagos/metabolismo , Citoesqueleto/metabolismo , Fagocitose/fisiologia , Membrana Celular , Microtúbulos
4.
Front Cell Dev Biol ; 10: 862237, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399505

RESUMO

Vimentin has been implicated in wound healing, inflammation, and cancer, but its functional contribution to intestinal diseases is poorly understood. To study how vimentin is involved during tissue injury and repair of simple epithelium, we induced colonic epithelial cell damage in the vimentin null (Vim-/-) mouse model. Vim-/- mice challenged with dextran sodium sulfate (DSS) had worse colitis manifestations than wild-type (WT) mice. Vim-/- colons also produced more reactive oxygen and nitrogen species, possibly contributing to the pathogenesis of gut inflammation and tumorigenesis than in WT mice. We subsequently describe that CD11b+ macrophages served as the mainly cellular source of reactive oxygen species (ROS) production via vimentin-ROS-pSTAT3-interleukin-6 inflammatory pathways. Further, we demonstrated that Vim-/- mice did not develop colitis-associated cancer model upon DSS treatment spontaneously but increased tumor numbers and size in the distal colon in the azoxymethane/DSS model comparing with WT mice. Thus, vimentin has a crucial role in protection from colitis induction and tumorigenesis of the colon.

5.
PLoS Pathog ; 17(7): e1009746, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34297778

RESUMO

HCV cell-culture system uses hepatoma-derived cell lines for efficient virus propagation. Tumor cells cultured in glucose undergo active aerobic glycolysis, but switch to oxidative phosphorylation for energy production when cultured in galactose. Here, we investigated whether modulation of glycolysis in hepatocytes affects HCV infection. We showed HCV release, but not entry, genome replication or virion assembly, is significantly blocked when cells are cultured in galactose, leading to accumulation of intracellular infectious virions within multivesicular body (MVB). Blockade of the MVB-lysosome fusion or treatment with pro-inflammatory cytokines promotes HCV release in galactose. Furthermore, we found this glycometabolic regulation of HCV release is mediated by MAPK-p38 phosphorylation. Finally, we showed HCV cell-to-cell transmission is not affected by glycometabolism, suggesting that HCV cell-to-supernatant release and cell-to-cell transmission are two mechanistically distinct pathways. In summary, we demonstrated glycometabolism regulates the efficiency and route of HCV release. We proposed HCV may exploit the metabolic state in hepatocytes to favor its spread through the cell-to-cell transmission in vivo to evade immune response.


Assuntos
Hepacivirus/fisiologia , Hepatite C/virologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Liberação de Vírus/fisiologia , Linhagem Celular Tumoral , Humanos
6.
JBMR Plus ; 5(7): e10509, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34258505

RESUMO

Ras homologous guanosine triphosphatases (RhoGTPases) control several cellular functions, including cytoskeletal actin remodeling and cell migration. Their activities are downregulated by GTPase-activating proteins (GAPs). Although RhoGTPases are implicated in bone remodeling and osteoclast and osteoblast function, their significance in human bone health and disease remains elusive. Here, we report defective RhoGTPase regulation as a cause of severe, early-onset, autosomal-dominant skeletal fragility in a three-generation Finnish family. Affected individuals (n = 13) presented with multiple low-energy peripheral and vertebral fractures despite normal bone mineral density (BMD). Bone histomorphometry suggested reduced bone volume, low surface area covered by osteoblasts and osteoclasts, and low bone turnover. Exome sequencing identified a novel heterozygous missense variant c.652G>A (p.G218R) in ARHGAP25, encoding a GAP for Rho-family GTPase Rac1. Variants in the ARHGAP25 5' untranslated region (UTR) also associated with BMD and fracture risk in the general population, across multiple genomewide association study (GWAS) meta-analyses (lead variant rs10048745). ARHGAP25 messenger RNA (mRNA) was expressed in macrophage colony-stimulating factor (M-CSF)-stimulated human monocytes and mouse osteoblasts, indicating a possible role for ARHGAP25 in osteoclast and osteoblast differentiation and activity. Studies on subject-derived osteoclasts from peripheral blood mononuclear cells did not reveal robust defects in mature osteoclast formation or resorptive activity. However, analysis of osteosarcoma cells overexpressing the ARHGAP25 G218R-mutant, combined with structural modeling, confirmed that the mutant protein had decreased GAP-activity against Rac1, resulting in elevated Rac1 activity, increased cell spreading, and membrane ruffling. Our findings indicate that mutated ARHGAP25 causes aberrant Rac1 function and consequently abnormal bone metabolism, highlighting the importance of RhoGAP signaling in bone metabolism in familial forms of skeletal fragility and in the general population, and expanding our understanding of the molecular pathways underlying skeletal fragility. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

7.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925176

RESUMO

Mechanical stress following injury regulates the quality and speed of wound healing. Improper mechanotransduction can lead to impaired wound healing and scar formation. Vimentin intermediate filaments control fibroblasts' response to mechanical stress and lack of vimentin makes cells significantly vulnerable to environmental stress. We previously reported the involvement of exosomal vimentin in mediating wound healing. Here we performed in vitro and in vivo experiments to explore the effect of wide-type and vimentin knockout exosomes in accelerating wound healing under osmotic stress condition. Our results showed that osmotic stress increases the size and enhances the release of exosomes. Furthermore, our findings revealed that exosomal vimentin enhances wound healing by protecting fibroblasts against osmotic stress and inhibiting stress-induced apoptosis. These data suggest that exosomes could be considered either as a stress modifier to restore the osmotic balance or as a conveyer of stress to induce osmotic stress-driven conditions.


Assuntos
Fibroblastos/metabolismo , Vimentina/metabolismo , Cicatrização/fisiologia , Adipócitos/metabolismo , Animais , Apoptose/fisiologia , Diferenciação Celular , Linhagem Celular , Movimento Celular , Exossomos/metabolismo , Humanos , Filamentos Intermediários/metabolismo , Mecanotransdução Celular , Células-Tronco Mesenquimais/metabolismo , Camundongos , Pressão Osmótica/fisiologia , Estresse Mecânico , Vimentina/fisiologia
8.
Front Cell Dev Biol ; 9: 632445, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33634131

RESUMO

Myosin is a diverse superfamily of motor proteins responsible for actin-based motility and contractility in eukaryotic cells. Myosin-18 family, including myosin-18A and myosin-18B, belongs to an unconventional class of myosin, which lacks ATPase motor activity, and the investigations on their functions and molecular mechanisms in vertebrate development and diseases have just been initiated in recent years. Myosin-18A is ubiquitously expressed in mammalian cells, whereas myosin-18B shows strong enrichment in striated muscles. Myosin-18 family is important for cell motility, sarcomere formation, and mechanosensing, mostly by interacting with other cytoskeletal proteins and cellular apparatus. Myosin-18A participates in several intracellular transport processes, such as Golgi trafficking, and has multiple roles in focal adhesions, stress fibers, and lamellipodia formation. Myosin-18B, on the other hand, participates in actomyosin alignment and sarcomere assembly, thus relating to cell migration and muscle contractility. Mutations of either Myo18a or Myo18b cause cardiac developmental defects in mouse, emphasizing their crucial role in muscle development and cardiac diseases. In this review, we revisit the discovery history of myosin-18s and summarize the evolving understanding of the molecular functions of myosin-18A and myosin-18B, with an emphasis on their separate yet closely related functions in cell motility and contraction. Moreover, we discuss the diseases tightly associated with myosin-18s, especially cardiovascular defects and cancer, as well as highlight the unanswered questions and potential future research perspectives on myosin-18s.

9.
Int J Mol Sci ; 21(20)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050149

RESUMO

Both the mechanosensitive vimentin cytoskeleton and endocytic caveolae contribute to various active processes such as cell migration, morphogenesis, and stress response. However, the crosstalk between these two systems has remained elusive. Here, we find that the subcellular expression between vimentin and caveolin-1 is mutual exclusive, and vimentin filaments physically arrest the cytoplasmic motility of caveolin-1 vesicles. Importantly, vimentin depletion increases the phosphorylation of caveolin-1 on site Tyr14, and restores the compromised cell migration rate and directionality caused by caveolin-1 deprivation. Moreover, upon hypo-osmotic shock, vimentin-knockout recovers the reduced intracellular motility of caveolin-1 vesicles. In contrary, caveolin-1 depletion shows no effect on the expression, phosphorylation (on sites Ser39, Ser56, and Ser83), distribution, solubility, and cellular dynamics of vimentin filaments. Taken together, our data reveals a unidirectional regulation of vimentin to caveolin-1, at least on the cellular level.


Assuntos
Caveolina 1/metabolismo , Filamentos Intermediários/metabolismo , Vimentina/metabolismo , Caveolina 1/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Vesículas Citoplasmáticas/metabolismo , Imunofluorescência , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Filamentos Intermediários/genética , Espaço Intracelular/metabolismo , Estresse Oxidativo , Fosforilação , Vimentina/genética , Cicatrização
10.
Viruses ; 12(5)2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357558

RESUMO

Virus infection has drawn extensive attention since it causes serious or even deadly diseases, consequently inducing a series of social and public health problems. Caveolin-1 is the most important structural protein of caveolae, a membrane invagination widely known for its role in endocytosis and subsequent cytoplasmic transportation. Caveolae/caveolin-1 is tightly associated with a wide range of biological processes, including cholesterol homeostasis, cell mechano-sensing, tumorigenesis, and signal transduction. Intriguingly, the versatile roles of caveolae/caveolin-1 in virus infections have increasingly been appreciated. Over the past few decades, more and more viruses have been identified to invade host cells via caveolae-mediated endocytosis, although other known pathways have been explored. The subsequent post-entry events, including trafficking, replication, assembly, and egress of a large number of viruses, are caveolae/caveolin-1-dependent. Deprivation of caveolae/caveolin-1 by drug application or gene editing leads to abnormalities in viral uptake, viral protein expression, or virion release, whereas the underlying mechanisms remain elusive and must be explored holistically to provide potential novel antiviral targets and strategies. This review recapitulates our current knowledge on how caveolae/caveolin-1 functions in every step of the viral infection cycle and various relevant signaling pathways, hoping to provide a new perspective for future viral cell biology research.


Assuntos
Cavéolas/virologia , Caveolina 1/metabolismo , Viroses/metabolismo , Fenômenos Fisiológicos Virais , Animais , Cavéolas/metabolismo , Caveolina 1/genética , Endocitose , Humanos , Viroses/genética , Viroses/fisiopatologia , Viroses/virologia , Vírus/genética
11.
Curr Biol ; 30(5): 767-778.e5, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32037094

RESUMO

Eukaryotic cells have diverse protrusive and contractile actin filament structures, which compete with one another for a limited pool of actin monomers. Numerous actin-binding proteins regulate the dynamics of actin structures, including tropomodulins (Tmods), which cap the pointed end of actin filaments. In striated muscles, Tmods prevent actin filaments from overgrowing, whereas in non-muscle cells, their function has remained elusive. Here, we identify two Tmod isoforms, Tmod1 and Tmod3, as key components of contractile stress fibers in non-muscle cells. Individually, Tmod1 and Tmod3 can compensate for one another, but their simultaneous depletion results in disassembly of actin-tropomyosin filaments, loss of force-generating stress fibers, and severe defects in cell morphology. Knockout-rescue experiments reveal that Tmod's interaction with tropomyosin is essential for its role in the stabilization of actin-tropomyosin filaments in cells. Thus, in contrast to their role in muscle myofibrils, in non-muscle cells, Tmods bind actin-tropomyosin filaments to protect them from depolymerizing, not elongating. Furthermore, loss of Tmods shifts the balance from linear actin-tropomyosin filaments to Arp2/3 complex-nucleated branched networks, and this phenotype can be partially rescued by inhibiting the Arp2/3 complex. Collectively, the data reveal that Tmods are essential for the maintenance of contractile actomyosin bundles and that Tmod-dependent capping of actin-tropomyosin filaments is critical for the regulation of actin homeostasis in non-muscle cells.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Tropomodulina/metabolismo , Tropomiosina/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Humanos
12.
Cytoskeleton (Hoboken) ; 77(1-2): 16-24, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31820591

RESUMO

Formins and tropomyosins (Tpms) are two central components of the microfilaments. Formins are involved in the nucleation and polymerization of actin filaments, and Tpms form along the actin stress fibers to regulate their dynamics. However, the correlation between formins and Tpms remains unclear. Here, we elucidated the function of distinct formins and their specific regulation to the subcellular-localization of Tpm isoforms on dorsal stress fibers in human osteosarcoma cells. Knockdown of individual formin isoform led to varied defects in actin stress fiber network, but did not affect the expression level of other formin isoforms and Tpms. Further investigation showed that different formins regulated distinct Tpm isoforms in decorating dorsal stress fibers. Specifically, DAAM1 and FHOD1 restricted the distal end expression of Tpm3.1; INF2 controlled the approximate localization of Tpm4.2; and Dia1 partially modulated the dorsal localization of Tpm1.6. Taken together, these data provide microscopy experimental evidence that different formins restrict the localization of distinct Tpm isoforms on dorsal actin stress fibers.


Assuntos
Osteossarcoma/microbiologia , Fibras de Estresse/metabolismo , Tropomiosina/metabolismo , Humanos , Osteossarcoma/metabolismo
13.
Biochem J ; 476(20): 2953-2963, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31657439

RESUMO

The formin FHOD1 acts as a nucleating, capping and bundling protein of actin filaments. In cells, release from the C-terminal diaphanous autoregulatory domain (DAD) of FHOD1 stimulates the protein into the active form. However, the cellular physiological relevance of active form FHOD1 and the phenotypic regulation by FHOD1 depletion are not completely understood. Here, we show that in contrast with the cytosolic diffused expression of auto-inhibited FHOD1, active FHOD1 by C-terminal truncation was recruited into all three types of actin stress fibers in human osteosarcoma cells. Notably, the recruited active FHOD1 was more incorporated with myosin II than α-actinin, and associated with both naïve and mature focal adhesions. Active FHOD1 displayed faster turnover than actin molecules on ventral stress fibers. Moreover, we witnessed the emergence of active FHOD1 from the cell periphery, which subsequently moved centripetally together with transverse arcs. Furthermore, FHOD1 knockdown resulted in defective maturation of actomyosin bundles and subsequently longer non-contractile dorsal stress fibers, whereas the turnover of both actin and myosin II were maintained normally. Importantly, the loss of FHOD1 led to slower actin centripetal flow, resulting in abnormal cell spreading and migration defects. Taken together, these results reveal a critical role of FHOD1 in temporal- and spatial- control of the morphology and dynamics of functional actin stress fibers during variable cell behavior.


Assuntos
Actinas/metabolismo , Proteínas Fetais/metabolismo , Forminas/metabolismo , Fibras de Estresse/metabolismo , Actinina/metabolismo , Actinas/genética , Actomiosina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Citosol/metabolismo , Proteínas Fetais/genética , Adesões Focais/metabolismo , Forminas/genética , Técnicas de Silenciamento de Genes , Humanos , Cinética , Miosina Tipo II/metabolismo , Imagem Óptica , Domínios Proteicos , Transdução de Sinais/genética , Transfecção
14.
J Hepatol ; 71(1): 52-61, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30880226

RESUMO

BACKGROUND & AIMS: Assembly of infectious hepatitis C virus (HCV) particles is known to involve host lipoproteins, giving rise to unique lipo-viro-particles (LVPs), but proteome studies now suggest that additional cellular proteins are associated with HCV virions or other particles containing the viral envelope glycoprotein E2. Many of these host cell proteins are common markers of exosomes, most notably the intracellular adaptor protein syntenin, which is required for exosome biogenesis. We aimed to elucidate the role of syntenin/E2 in HCV infection. METHODS: Using cell culture-derived HCV, we studied the biogenesis and function of E2-coated exosomes in both hepatoma cells and primary human hepatocytes (PHHs). RESULTS: Knockout of syntenin had a negligible impact on HCV replication and virus production, whereas ectopic expression of syntenin at physiological levels reduced intracellular E2 abundance, while concomitantly increasing the secretion of E2-coated exosomes. Importantly, cells expressing syntenin and HCV structural proteins efficiently released exosomes containing E2 but lacking the core protein. Furthermore, infectivity of HCV released from syntenin-expressing hepatoma cells and PHHs was more resistant to neutralization by E2-specific antibodies and chronic-phase patient serum. We also found that high E2/syntenin levels in sera correlate with lower serum neutralization capability. CONCLUSIONS: E2- and syntenin-containing exosomes are a major type of particle released from cells expressing high levels of syntenin. Efficient production of E2-coated exosomes renders HCV infectivity less susceptible to antibody neutralization in hepatoma cells and PHHs. LAY SUMMARY: This study identifies a key role for syntenin in the regulation of E2 secretion via exosomes. Efficient production of E2-coated exosomes was shown to make hepatitis C virus less sensitive to antibody neutralization. These results may have implications for the development of a hepatitis C virus vaccine.


Assuntos
Anticorpos Neutralizantes/imunologia , Exossomos/metabolismo , Hepacivirus/fisiologia , Hepatite C , Sinteninas/metabolismo , Proteínas do Envelope Viral/biossíntese , Células Cultivadas , Hepatite C/imunologia , Hepatite C/virologia , Anticorpos Anti-Hepatite C/imunologia , Humanos , Vírion/fisiologia
15.
J Cell Biochem ; 120(8): 13168-13176, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30887571

RESUMO

Intermediate filaments (IFs) play a key role in the control of cell structure and morphology, cell mechano-responses, migration, proliferation, and apoptosis. However, the mechanisms regulating IFs organization in motile adhesive cells under certain physical/pathological conditions remain to be fully understood. In this study, we found hypo-osmotic-induced stress results in a dramatic but reversible rearrangement of the IF network. Vimentin and nestin IFs are partially depolymerized as they are redistributed throughout the cell cytoplasm after hypo-osmotic shock. This spreading of the IFs requires an intact microtubule network and the motor protein associated transportation. Both nocodazole treatment and depletion of kinesin-1 (KIF5B) block the hypo-osmotic shock-induced rearrangement of IFs showing that the dynamic behavior of IFs largely depends on microtubules and kinesin-dependent transport. Moreover, we show that cell survival rates are dramatically decreased in response to hypo-osmotic shock, which was more severe by vimentin IFs depletion, indicating its contribution to osmotic endurance. Collectively, these results reveal a critical role of vimentin IFs under hypotonic stress and provide evidence that IFs are important for the defense mechanisms during the osmotic challenge.


Assuntos
Filamentos Intermediários/metabolismo , Vimentina/metabolismo , Linhagem Celular Tumoral , Imunofluorescência , Células HeLa , Humanos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Nocodazol/farmacologia , Pressão Osmótica/efeitos dos fármacos
16.
Curr Biol ; 29(1): 81-92.e5, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30581023

RESUMO

Cell adhesion, morphogenesis, mechanosensing, and muscle contraction rely on contractile actomyosin bundles, where the force is produced through sliding of bipolar myosin II filaments along actin filaments. The assembly of contractile actomyosin bundles involves registered alignment of myosin II filaments and their subsequent fusion into large stacks. However, mechanisms underlying the assembly of myosin II stacks and their physiological functions have remained elusive. Here, we identified myosin-18B, an unconventional myosin, as a stable component of contractile stress fibers. Myosin-18B co-localized with myosin II motor domains in stress fibers and was enriched at the ends of myosin II stacks. Importantly, myosin-18B deletion resulted in drastic defects in the concatenation and persistent association of myosin II filaments with each other and thus led to severely impaired assembly of myosin II stacks. Consequently, lack of myosin-18B resulted in defective maturation of actomyosin bundles from their precursors in osteosarcoma cells. Moreover, myosin-18B knockout cells displayed abnormal morphogenesis, migration, and ability to exert forces to the environment. These results reveal a critical role for myosin-18B in myosin II stack assembly and provide evidence that myosin II stacks are important for a variety of vital processes in cells.


Assuntos
Contração Muscular/fisiologia , Miosina Tipo II/fisiologia , Miosinas/metabolismo , Fibras de Estresse/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Actomiosina/metabolismo , Linhagem Celular Tumoral , Células HeLa , Humanos
17.
Biochem Biophys Res Commun ; 507(1-4): 161-167, 2018 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-30415776

RESUMO

Both the cytoskeletal intermediate filaments (IFs) and cytoplasmic caveolae contribute to active processes such as cell migration, morphogenesis and vesicular trafficking, but the interplay between these two systems has remained elusive. Here, we find that vimentin and nestin IFs interact with caveolae central component caveolin-1 (CAV-1) and importantly, restrain the intracellular trafficking of CAV-1 positive vesicles by serving as a physical barrier. Consequently, CAV-1 vesicles show less density and mobility in vimentin IFs enriched region, which is a substrate stiffness independent process. Moreover, depletion of vimentin IFs releases the slow movement proportion of CAV-1 positive vesicles and thus increases their cytoplasmic dynamics, whereas the expression of caveolae-associated protein CAV-1, CAV-2 and cavin-1 were unaffected. Collectively, these results reveal a negative role of IFs in regulating the trafficking of intracellular CAV-1 vesicles in live cells.


Assuntos
Caveolina 1/metabolismo , Filamentos Intermediários/metabolismo , Espaço Intracelular/metabolismo , Vimentina/metabolismo , Cavéolas/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Humanos , Transporte Proteico
18.
J Cell Sci ; 130(5): 892-902, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28096473

RESUMO

The actin and intermediate filament cytoskeletons contribute to numerous cellular processes, including morphogenesis, cytokinesis and migration. These two cytoskeletal systems associate with each other, but the underlying mechanisms of this interaction are incompletely understood. Here, we show that inactivation of vimentin leads to increased actin stress fiber assembly and contractility, and consequent elevation of myosin light chain phosphorylation and stabilization of tropomyosin-4.2 (see Geeves et al., 2015). The vimentin-knockout phenotypes can be rescued by re-expression of wild-type vimentin, but not by the non-filamentous 'unit length form' vimentin, demonstrating that intact vimentin intermediate filaments are required to facilitate the effects on the actin cytoskeleton. Finally, we provide evidence that the effects of vimentin on stress fibers are mediated by activation of RhoA through its guanine nucleotide exchange factor GEF-H1 (also known as ARHGEF2). Vimentin depletion induces phosphorylation of the microtubule-associated GEF-H1 on Ser886, and thereby promotes RhoA activity and actin stress fiber assembly. Taken together, these data reveal a new mechanism by which intermediate filaments regulate contractile actomyosin bundles, and may explain why elevated vimentin expression levels correlate with increased migration and invasion of cancer cells.


Assuntos
Actinas/metabolismo , Filamentos Intermediários/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fibras de Estresse/metabolismo , Vimentina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Fosforilação
19.
Cell Rep ; 11(10): 1511-8, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26027931

RESUMO

The actin cytoskeleton and cytoplasmic intermediate filaments contribute to cell migration and morphogenesis, but the interplay between these two central cytoskeletal elements has remained elusive. Here, we find that specific actin stress fiber structures, transverse arcs, interact with vimentin intermediate filaments and promote their retrograde flow. Consequently, myosin-II-containing arcs are important for perinuclear localization of the vimentin network in cells. The vimentin network reciprocally restricts retrograde movement of arcs and hence controls the width of flat lamellum at the leading edge of the cell. Depletion of plectin recapitulates the vimentin organization phenotype of arc-deficient cells without affecting the integrity of vimentin filaments or stress fibers, demonstrating that this cytoskeletal cross-linker is required for productive interactions between vimentin and arcs. Collectively, our results reveal that plectin-mediated interplay between contractile actomyosin arcs and vimentin intermediate filaments controls the localization and dynamics of these two cytoskeletal systems and is consequently important for cell morphogenesis.


Assuntos
Actinas/metabolismo , Vimentina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Citoesqueleto/metabolismo , Humanos , Filamentos Intermediários/metabolismo , Plectina/metabolismo , Fibras de Estresse
20.
PLoS Pathog ; 11(3): e1004711, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25747942

RESUMO

Certain RNA and DNA viruses that infect plants, insects, fish or poikilothermic animals encode Class 1 RNaseIII endoribonuclease-like proteins. dsRNA-specific endoribonuclease activity of the RNaseIII of rock bream iridovirus infecting fish and Sweet potato chlorotic stunt crinivirus (SPCSV) infecting plants has been shown. Suppression of the host antiviral RNA interference (RNAi) pathway has been documented with the RNaseIII of SPCSV and Heliothis virescens ascovirus infecting insects. Suppression of RNAi by the viral RNaseIIIs in non-host organisms of different kingdoms is not known. Here we expressed PPR3, the RNaseIII of Pike-perch iridovirus, in the non-hosts Nicotiana benthamiana (plant) and Caenorhabditis elegans (nematode) and found that it cleaves double-stranded small interfering RNA (ds-siRNA) molecules that are pivotal in the host RNA interference (RNAi) pathway and thereby suppresses RNAi in non-host tissues. In N. benthamiana, PPR3 enhanced accumulation of Tobacco rattle tobravirus RNA1 replicon lacking the 16K RNAi suppressor. Furthermore, PPR3 suppressed single-stranded RNA (ssRNA)--mediated RNAi and rescued replication of Flock House virus RNA1 replicon lacking the B2 RNAi suppressor in C. elegans. Suppression of RNAi was debilitated with the catalytically compromised mutant PPR3-Ala. However, the RNaseIII (CSR3) produced by SPCSV, which cleaves ds-siRNA and counteracts antiviral RNAi in plants, failed to suppress ssRNA-mediated RNAi in C. elegans. In leaves of N. benthamiana, PPR3 suppressed RNAi induced by ssRNA and dsRNA and reversed silencing; CSR3, however, suppressed only RNAi induced by ssRNA and was unable to reverse silencing. Neither PPR3 nor CSR3 suppressed antisense-mediated RNAi in Drosophila melanogaster. These results show that the RNaseIII enzymes of RNA and DNA viruses suppress RNAi, which requires catalytic activities of RNaseIII. In contrast to other viral silencing suppression proteins, the RNaseIII enzymes are homologous in unrelated RNA and DNA viruses and can be detected in viral genomes using gene modeling and protein structure prediction programs.


Assuntos
Crinivirus/metabolismo , Proteína Catiônica de Eosinófilo/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Iridovirus/metabolismo , Interferência de RNA/fisiologia , Proteínas Virais/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/virologia , Immunoblotting , Mutagênese Sítio-Dirigida , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , RNA de Cadeia Dupla , RNA Interferente Pequeno/biossíntese , Nicotiana/virologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA