Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(8): 1626-1642, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39013459

RESUMO

Trithorax-related H3K4 methyltransferases, KMT2C and KMT2D, are critical epigenetic modifiers. Haploinsufficiency of KMT2C was only recently recognized as a cause of neurodevelopmental disorder (NDD), so the clinical and molecular spectrums of the KMT2C-related NDD (now designated as Kleefstra syndrome 2) are largely unknown. We ascertained 98 individuals with rare KMT2C variants, including 75 with protein-truncating variants (PTVs). Notably, ∼15% of KMT2C PTVs were inherited. Although the most highly expressed KMT2C transcript consists of only the last four exons, pathogenic PTVs were found in almost all the exons of this large gene. KMT2C variant interpretation can be challenging due to segmental duplications and clonal hematopoesis-induced artifacts. Using samples from 27 affected individuals, divided into discovery and validation cohorts, we generated a moderate strength disorder-specific KMT2C DNA methylation (DNAm) signature and demonstrate its utility in classifying non-truncating variants. Based on 81 individuals with pathogenic/likely pathogenic variants, we demonstrate that the KMT2C-related NDD is characterized by developmental delay, intellectual disability, behavioral and psychiatric problems, hypotonia, seizures, short stature, and other comorbidities. The facial module of PhenoScore, applied to photographs of 34 affected individuals, reveals that the KMT2C-related facial gestalt is significantly different from the general NDD population. Finally, using PhenoScore and DNAm signatures, we demonstrate that the KMT2C-related NDD is clinically and epigenetically distinct from Kleefstra and Kabuki syndromes. Overall, we define the clinical features, molecular spectrum, and DNAm signature of the KMT2C-related NDD and demonstrate they are distinct from Kleefstra and Kabuki syndromes highlighting the need to rename this condition.


Assuntos
Anormalidades Múltiplas , Deleção Cromossômica , Cromossomos Humanos Par 9 , Anormalidades Craniofaciais , Metilação de DNA , Proteínas de Ligação a DNA , Face , Doenças Hematológicas , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Doenças Vestibulares , Humanos , Anormalidades Múltiplas/genética , Doenças Vestibulares/genética , Deficiência Intelectual/genética , Face/anormalidades , Face/patologia , Proteínas de Ligação a DNA/genética , Masculino , Feminino , Doenças Hematológicas/genética , Transtornos do Neurodesenvolvimento/genética , Anormalidades Craniofaciais/genética , Cromossomos Humanos Par 9/genética , Criança , Metilação de DNA/genética , Pré-Escolar , Proteínas de Neoplasias/genética , Adolescente , Hipertricose/genética , Mutação , Insuficiência de Crescimento/genética , Histona-Lisina N-Metiltransferase/genética , Cardiopatias Congênitas
2.
Hum Mol Genet ; 32(22): 3123-3134, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37166351

RESUMO

Germline pathogenic variants in two genes encoding the lysine-specific histone methyltransferase genes SETD1A and SETD2 are associated with neurodevelopmental disorders (NDDs) characterized by developmental delay and congenital anomalies. The SETD1A and SETD2 gene products play a critical role in chromatin-mediated regulation of gene expression. Specific methylation episignatures have been detected for a range of chromatin gene-related NDDs and have impacted clinical practice by improving the interpretation of variant pathogenicity. To investigate if SETD1A and/or SETD2-related NDDs are associated with a detectable episignature, we undertook targeted genome-wide methylation profiling of > 2 M CpGs using a next-generation sequencing-based assay. A comparison of methylation profiles in patients with SETD1A variants (n = 6) did not reveal evidence of a strong methylation episignature. A review of the clinical and genetic features of the SETD2 patient group revealed that, as reported previously, there were phenotypic differences between patients with truncating mutations (n = 4, Luscan-Lumish syndrome; MIM:616831) and those with missense codon 1740 variants [p.Arg1740Trp (n = 4) and p.Arg1740Gln (n = 2)]. Both SETD2 subgroups demonstrated a methylation episignature, which was characterized by hypomethylation and hypermethylation events, respectively. Within the codon 1740 subgroup, both the methylation changes and clinical phenotype were more severe in those with p.Arg1740Trp variants. We also noted that two of 10 cases with a SETD2-NDD had developed a neoplasm. These findings reveal novel epigenotype-genotype-phenotype correlations in SETD2-NDDs and predict a gain-of-function mechanism for SETD2 codon 1740 pathogenic variants.


Assuntos
Cromatina , Transtornos do Neurodesenvolvimento , Humanos , Cromatina/genética , Metilação de DNA/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Estudos de Associação Genética , Códon
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA