Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 23(12): 1329-1337, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34876684

RESUMO

Simultaneous imaging of various facets of intact biological systems across multiple spatiotemporal scales is a long-standing goal in biology and medicine, for which progress is hindered by limits of conventional imaging modalities. Here we propose using the refractive index (RI), an intrinsic quantity governing light-matter interaction, as a means for such measurement. We show that major endogenous subcellular structures, which are conventionally accessed via exogenous fluorescence labelling, are encoded in three-dimensional (3D) RI tomograms. We decode this information in a data-driven manner, with a deep learning-based model that infers multiple 3D fluorescence tomograms from RI measurements of the corresponding subcellular targets, thereby achieving multiplexed microtomography. This approach, called RI2FL for refractive index to fluorescence, inherits the advantages of both high-specificity fluorescence imaging and label-free RI imaging. Importantly, full 3D modelling of absolute and unbiased RI improves generalization, such that the approach is applicable to a broad range of new samples without retraining to facilitate immediate applicability. The performance, reliability and scalability of this technology are extensively characterized, and its various applications within single-cell profiling at unprecedented scales (which can generate new experimentally testable hypotheses) are demonstrated.


Assuntos
Aprendizado Profundo , Tomografia com Microscopia Eletrônica/métodos , Imageamento Tridimensional/métodos , Análise de Célula Única/métodos , Frações Subcelulares/metabolismo , Células 3T3 , Actinas/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Gotículas Lipídicas/metabolismo , Camundongos , Mitocôndrias/metabolismo , Imagem Óptica/métodos , Refratometria
2.
Development ; 148(6)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33658222

RESUMO

The actomyosin complex plays crucial roles in various life processes by balancing the forces generated by cellular components. In addition to its physical function, the actomyosin complex participates in mechanotransduction. However, the exact role of actomyosin contractility in force transmission and the related transcriptional changes during morphogenesis are not fully understood. Here, we report a mechanogenetic role of the actomyosin complex in branching morphogenesis using an organotypic culture system of mouse embryonic submandibular glands. We dissected the physical factors arranged by characteristic actin structures in developing epithelial buds and identified the spatial distribution of forces that is essential for buckling mechanism to promote the branching process. Moreover, the crucial genes required for the distribution of epithelial progenitor cells were regulated by YAP and TAZ through a mechanotransduction process in epithelial organs. These findings are important for our understanding of the physical processes involved in the development of epithelial organs and provide a theoretical background for developing new approaches for organ regeneration.


Assuntos
Citoesqueleto de Actina/genética , Actomiosina/genética , Morfogênese/genética , Contração Muscular/genética , Citoesqueleto de Actina/ultraestrutura , Actinas/genética , Actinas/ultraestrutura , Actomiosina/ultraestrutura , Aciltransferases/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células Epiteliais/metabolismo , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Humanos , Mecanotransdução Celular/genética , Camundongos , Regeneração/genética , Glândula Submandibular/metabolismo , Proteínas de Sinalização YAP
3.
Sci Rep ; 7(1): 6654, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28751719

RESUMO

Identification of lymphocyte cell types are crucial for understanding their pathophysiological roles in human diseases. Current methods for discriminating lymphocyte cell types primarily rely on labelling techniques with magnetic beads or fluorescence agents, which take time and have costs for sample preparation and may also have a potential risk of altering cellular functions. Here, we present the identification of non-activated lymphocyte cell types at the single-cell level using refractive index (RI) tomography and machine learning. From the measurements of three-dimensional RI maps of individual lymphocytes, the morphological and biochemical properties of the cells are quantitatively retrieved. To construct cell type classification models, various statistical classification algorithms are compared, and the k-NN (k = 4) algorithm was selected. The algorithm combines multiple quantitative characteristics of the lymphocyte to construct the cell type classifiers. After optimizing the feature sets via cross-validation, the trained classifiers enable identification of three lymphocyte cell types (B, CD4+ T, and CD8+ T cells) with high sensitivity and specificity. The present method, which combines RI tomography and machine learning for the first time to our knowledge, could be a versatile tool for investigating the pathophysiological roles of lymphocytes in various diseases including cancers, autoimmune diseases, and virus infections.


Assuntos
Ativação Linfocitária , Linfócitos/classificação , Aprendizado de Máquina , Refratometria/métodos , Tomografia/métodos , Animais , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Análise de Célula Única/métodos
4.
Sensors (Basel) ; 13(4): 4170-91, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23539026

RESUMO

A cellular-level study of the pathophysiology is crucial for understanding the mechanisms behind human diseases. Recent advances in quantitative phase imaging (QPI) techniques show promises for the cellular-level understanding of the pathophysiology of diseases. To provide important insight on how the QPI techniques potentially improve the study of cell pathophysiology, here we present the principles of QPI and highlight some of the recent applications of QPI ranging from cell homeostasis to infectious diseases and cancer.


Assuntos
Células/patologia , Imageamento Tridimensional/métodos , Anemia Falciforme/patologia , Fenômenos Biomecânicos , Morte Celular , Divisão Celular , Proliferação de Células , Eritrócitos/patologia , Homeostase , Humanos , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA