Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
medRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766261

RESUMO

The etiology of prostate cancer, the second most common cancer in men globally, has a strong heritable component. While rare coding germline variants in several genes have been identified as risk factors from candidate gene and linkage studies, the exome-wide spectrum of causal rare variants remains to be fully explored. To more comprehensively address their contribution, we analysed data from 37,184 prostate cancer cases and 331,329 male controls from five cohorts with germline exome/genome sequencing and one cohort with imputed array data from a population enriched in low-frequency deleterious variants. Our gene-level collapsing analysis revealed that rare damaging variants in SAMHD1 as well as genes in the DNA damage response pathway (BRCA2, ATM and CHEK2) are associated with the risk of overall prostate cancer. We also found that rare damaging variants in AOX1 and BRCA2 were associated with increased severity of prostate cancer in a case-only analysis of aggressive versus non-aggressive prostate cancer. At the single-variant level, we found rare non-synonymous variants in three genes (HOXB13, CHEK2, BIK) significantly associated with increased risk of overall prostate cancer and in four genes (ANO7, SPDL1, AR, TERT) with decreased risk. Altogether, this study provides deeper insights into the genetic architecture and biological basis of prostate cancer risk and severity.

2.
Kidney Int Rep ; 8(8): 1638-1647, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37547535

RESUMO

Introduction: The diagnosis and management of proteinuric kidney diseases such as focal segmental glomerulosclerosis (FSGS) are challenging. Genetics holds the promise to improve clinical decision making for these diseases; however, it is often performed too late to enable timely clinical action and it is not implemented within routine outpatient nephrology visits. Methods: We sought to test the implementation and feasibility of clinical rapid genome sequencing (GS) in guiding decision making in patients with proteinuric kidney disease in real-time and embedded in the outpatient nephrology setting. Results: We enrolled 10 children or young adults with biopsy-proven FSGS (9 cases) or minimal change disease (1 case). The mean age at enrollment was 16.2 years (range 2-30). The workflow did not require referral to external genetics clinics but was conducted entirely during the nephrology standard-of-care appointments. The total turn-around-time from enrollment to return-of-results and clinical decision averaged 21.8 days (12.4 for GS), which is well within a time frame that allows clinically relevant treatment decisions. A monogenic or APOL1-related form of kidney disease was diagnosed in 5 of 10 patients. The genetic findings resulted in a rectified diagnosis in 6 patients. Both positive and negative GS findings determined a change in pharmacological treatment. In 3 patients, the results were instrumental for transplant evaluation, donor selection, and the immunosuppressive treatment. All patients and families received genetic counseling. Conclusion: Clinical GS is feasible and can be implemented in real-time in the outpatient care to help guiding clinical management. Additional studies are needed to confirm the cost-effectiveness and broader utility of clinical GS across the phenotypic and demographic spectrum of kidney diseases.

3.
JCO Precis Oncol ; 6: e2200245, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36480778

RESUMO

PURPOSE: The combination of whole-genome and transcriptome sequencing (WGTS) is expected to transform diagnosis and treatment for patients with cancer. WGTS is a comprehensive precision diagnostic test that is starting to replace the standard of care for oncology molecular testing in health care systems around the world; however, the implementation and widescale adoption of this best-in-class testing is lacking. METHODS: Here, we address the barriers in integrating WGTS for cancer diagnostics and treatment selection and answer questions regarding utility in different cancer types, cost-effectiveness and affordability, and other practical considerations for WGTS implementation. RESULTS: We review the current studies implementing WGTS in health care systems and provide a synopsis of the clinical evidence and insights into practical considerations for WGTS implementation. We reflect on regulatory, costs, reimbursement, and incidental findings aspects of this test. CONCLUSION: WGTS is an appropriate comprehensive clinical test for many tumor types and can replace multiple, cascade testing approaches currently performed. Decreasing sequencing cost, increasing number of clinically relevant aberrations and discovery of more complex biomarkers of treatment response, should pave the way for health care systems and laboratories in implementing WGTS into clinical practice, to transform diagnosis and treatment for patients with cancer.


Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico
5.
Front Genet ; 13: 906077, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928455

RESUMO

Partial tetrasomy of distal 13q has a reported association with a variable phenotype including microphthalmia, ear abnormalities, hypotelorism, facial dysmorphisms, urogenital defects, pigmentation and skin defects, and severe learning difficulties. A wide range of mosaicism has been reported, which may, to some extent, account for the variable spectrum of observed phenotypes. We report here a pregnancy conceived using intrauterine insemination in a 32-year-old female with a history of infertility. Non-invasive prenatal screening (NIPS) was performed in the first trimester which reported an increased risk for trisomy 13. Follow-up cytogenetic workup using chorionic villus sampling (CVS) and amniotic fluid samples showed a mosaic karyotype with a small supernumerary marker chromosome (sSMC). Chromosomal microarray analysis (CMA) identified a mosaic 31.34 Mb terminal gain on chr13q31.1q34 showing the likely origin of the sSMC to distal chromosome 13q. Follow-up metaphase FISH testing suggested an inverted duplication rearrangement involving 13q31q34 in the marker chromosome and the presence of a neocentromere. At 21 months of age, the proband has a history of gross motor delay, hypotonia, left microphthalmia, strabismus, congenital anomaly of the right optic nerve, hemangiomas, and a tethered spinal cord. Postnatal chromosome analyses in buccal, peripheral blood, and spinal cord ligament tissues were consistent with the previous amniocentesis and CVS findings, and the degree of mosaicism varied from 25 to 80%. It is often challenging to pinpoint the chromosomal identity of sSMCs using banding cytogenetics. A combination of low-pass genome sequencing of cell-free DNA, chromosomal microarray, and FISH enabled the identification of the precise chromosomal rearrangement in this patient. This study adds to the growing list of clinically identified neocentric marker chromosomes and is the first described instance of partial tetrasomy 13q31q34 identified in a mosaic state prenatally. Since NIPS is now being routinely performed along with invasive testing for advanced maternal age, an increased prenatal detection rate for mosaic sSMCs in otherwise normal pregnancies is expected. Future studies investigating how neocentromeres mediate gene expression changes could help identify potential epigenetic targets as treatment options to rescue or reverse the phenotypes seen in patients with congenital neocentromeres.

6.
Artigo em Inglês | MEDLINE | ID: mdl-35732497

RESUMO

Vacuolar ATPases (V-ATPases) are large multisubunit proton pumps conserved among all eukaryotic cells that are involved in diverse functions including acidification of membrane-bound intracellular compartments. The ATP6AP1 gene encodes an accessory subunit of the vacuolar (V)-ATPase protein pump. Pathogenic variants in ATP6AP1 have been described in association with a congenital disorder of glycosylation (CDG), which are highly variable, but often characterized by immunodeficiency, hepatopathy, and neurologic manifestations. Although the most striking and common clinical feature is hepatopathy, the phenotypic and genotypic spectrum of ATP6AP1-CDG continues to expand. Here, we report identical twins who presented with acute liver failure and jaundice. Prenatal features included cystic hygroma, atrial septal defect, and ventriculomegaly. Postnatal features included pectus carinatum, connective tissue abnormalities, and hypospadias. Whole-exome sequencing (WES) revealed a novel de novo in-frame deletion in the ATP6AP1 gene (c.230_232delACT;p.Tyr77del). Although both twins have the commonly reported clinical feature of hepatopathy seen in other individuals with ATP6AP1-CDG-related disorder, they do not have neurological sequelae. This report expands the phenotypic spectrum of ATP6AP1-CDG-related disorder with both probands exhibiting unique prenatal and postnatal features, including fetal ventriculomegaly, umbilical hernia, pectus carinatum, micropenis, and hypospadias. Furthermore, this case affirms that neurological features described in the initial case series on ATP6AP1-CDG do not appear to be central, whereas the prenatal and connective tissue manifestations may be more common than previously thought. This emphasizes the importance of long-term clinical follow-up and variant interpretation using current updated recommendations.


Assuntos
Defeitos Congênitos da Glicosilação , Hidrocefalia , Hipospadia , Hepatopatias , Pectus Carinatum , ATPases Vacuolares Próton-Translocadoras , Defeitos Congênitos da Glicosilação/genética , Humanos , Masculino , Fenótipo , ATPases Vacuolares Próton-Translocadoras/genética
7.
Semin Cancer Biol ; 84: 23-31, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34256129

RESUMO

Whole-genome sequencing either alone or in combination with whole-transcriptome sequencing has started to be used to analyze clinical tumor samples to improve diagnosis, provide risk stratification, and select patient-specific therapies. Compared with current genomic testing strategies, largely focused on small number of genes tested individually or targeted panels, whole-genome and transcriptome sequencing (WGTS) provides novel opportunities to identify and report a potentially much larger number of actionable alterations with diagnostic, prognostic, and/or predictive impact. Such alterations include point mutations, indels, copy- number aberrations and structural variants, but also germline variants, fusion genes, noncoding alterations and mutational signatures. Nevertheless, these comprehensive tests are accompanied by many challenges ranging from the extent and diversity of sequence alterations detected by these methods to the complexity and limited existing standardization in interpreting them. We describe the challenges of WGTS interpretation and the opportunities with comprehensive genomic testing.


Assuntos
Neoplasias , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Oncologia , Mutação , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisão/métodos , Transcriptoma
8.
Semin Cancer Biol ; 84: 32-39, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34175442

RESUMO

Precision diagnostics is one of the two pillars of precision medicine. Sequencing efforts in the past decade have firmly established cancer as a primarily genetically driven disease. This concept is supported by therapeutic successes aimed at particular pathways that are perturbed by specific driver mutations in protein-coding domains and reflected in three recent FDA tissue agnostic cancer drug approvals. In addition, there is increasing evidence from studies that interrogate the entire genome by whole-genome sequencing that acquired global and complex genomic aberrations including those in non-coding regions of the genome might also reflect clinical outcome. After addressing technical, logistical, financial and ethical challenges, national initiatives now aim to introduce clinical whole-genome sequencing into real-world diagnostics as a rational and potentially cost-effective tool for response prediction in cancer and to identify patients who would benefit most from 'expensive' targeted therapies and recruitment into clinical trials. However, so far, this has not been accompanied by a systematic and prospective evaluation of the clinical utility of whole-genome sequencing within clinical trials of uniformly treated patients of defined clinical outcome. This approach would also greatly facilitate novel predictive biomarker discovery and validation, ultimately reducing size and duration of clinical trials and cost of drug development. This manuscript is the third in a series of three to review and critically appraise the potential and challenges of clinical whole-genome sequencing in solid tumors and hematological malignancies.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Oncologia , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Medicina de Precisão
9.
Semin Cancer Biol ; 84: 16-22, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34119643

RESUMO

Interrogating the tumor genome in its entirety by whole-genome sequencing (WGS) offers an unprecedented insight into the biology and pathogenesis of cancer, with potential impact on diagnostics, prognostication and therapy selection. WGS is able to detect sequence as well as structural variants and thereby combines central domains of cytogenetics and molecular genetics. Given the potential of WGS in directing targeted therapeutics and clinical decision-making, we envision a gradual transition of the method from research to clinical routine. This review is one out of three within this issue aimed at facilitating this effort, by discussing in-depth analytical validation, clinical interpretation and clinical utility of WGS. The review highlights the requirements for implementing, validating and maintaining a clinical WGS pipeline to obtain high-quality patient-specific data in accordance with the local regulatory landscape. Every step of the WGS pipeline, which includes DNA extraction, library preparation, sequencing, bioinformatics analysis, and data storage, is considered with respect to its logistics, necessities, potential pitfalls, and the required quality management. WGS is likely to drive clinical diagnostics and patient care forward, if requirements and challenges of the technique are recognized and met.


Assuntos
Neoplasias , Biologia Computacional , Humanos , Oncologia , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisão , Sequenciamento Completo do Genoma/métodos
10.
Cancers (Basel) ; 13(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34944796

RESUMO

Cutaneous and breast implant-associated anaplastic large-cell lymphomas (cALCLs and BI-ALCLs) are two localized forms of peripheral T-cell lymphomas (PTCLs) that are recognized as distinct entities within the family of ALCL. JAK-STAT signaling is a common feature of all ALCL subtypes, whereas DUSP22/IRF4, TP63 and TYK gene rearrangements have been reported in a proportion of ALK-negative sALCLs and cALCLs. Both cALCLs and BI-ALCLs differ in their gene expression profiles compared to PTCLs; however, a direct comparison of the genomic alterations and transcriptomes of these two entities is lacking. By performing RNA sequencing of 1385 genes (TruSight RNA Pan-Cancer, Illumina) in 12 cALCLs, 10 BI-ALCLs and two anaplastic lymphoma kinase (ALK)-positive sALCLs, we identified the previously reported TYK2-NPM1 fusion in 1 cALCL (1/12, 8%), and four new intrachromosomal gene fusions in 2 BI-ALCLs (2/10, 20%) involving genes on chromosome 1 (EPS15-GNG12 and ARNT-GOLPH3L) and on chromosome 17 (MYO18A-GIT1 and NF1-GOSR1). One of the two BI-ALCL samples showed a complex karyotype, raising the possibility that genomic instability may be responsible for intra-chromosomal fusions in BI-ALCL. Moreover, transcriptional analysis revealed similar upregulation of the PI3K/Akt pathway, associated with enrichment in the expression of neurotrophin signaling genes, which was more conspicuous in BI-ALCL, as well as differences, i.e., over-expression of genes involved in the RNA polymerase II transcription program in BI-ALCL and of the RNA splicing/processing program in cALCL.

11.
Artigo em Inglês | MEDLINE | ID: mdl-34362827

RESUMO

Sclerosing epithelioid fibrosarcoma (SEF) is a rare and aggressive soft-tissue sarcoma thought to originate in fibroblasts of the tissues comprising tendons, ligaments, and muscles. Minimally responsive to conventional cytotoxic chemotherapies, >50% of SEF patients experience local recurrence and/or metastatic disease. SEF is most commonly discovered in middle-aged and elderly adults, but also rarely in children. A common gene fusion occurring between the EWSR1 and CREB3L1 genes has been observed in 80%-90% of SEF cases. We describe here the youngest SEF patient reported to date (a 3-yr-old Caucasian male) who presented with numerous bony and lung metastases. Additionally, we perform a comprehensive literature review of all SEF-related articles published since the disease was first characterized. Finally, we describe the generation of an SEF primary cell line, the first such culture to be reported. The patient described here experienced persistent disease progression despite aggressive treatment including multiple resections, radiotherapy, and numerous chemotherapies and targeted therapeutics. Untreated and locally recurrent tumor and metastatic tissue were sequenced by whole-genome, whole-exome, and deep-transcriptome next-generation sequencing with comparison to a patient-matched normal blood sample. Consistent across all sequencing analyses was the disease-defining EWSR1-CREB3L1 fusion as a single feature consensus. We provide an analysis of our genomic findings and discuss potential therapeutic strategies for SEF.


Assuntos
Fibrossarcoma , Neoplasias de Tecidos Moles , Biomarcadores Tumorais , Pré-Escolar , Fibrossarcoma/genética , Fusão Gênica , Rearranjo Gênico , Humanos , Masculino , Neoplasias de Tecidos Moles/genética
12.
Am J Hum Genet ; 107(5): 932-941, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33108757

RESUMO

Harmonization of variant pathogenicity classification across laboratories is important for advancing clinical genomics. The two CLIA-accredited Electronic Medical Record and Genomics Network sequencing centers and the six CLIA-accredited laboratories and one research laboratory performing genome or exome sequencing in the Clinical Sequencing Evidence-Generating Research Consortium collaborated to explore current sources of discordance in classification. Eight laboratories each submitted 20 classified variants in the ACMG secondary finding v.2.0 genes. After removing duplicates, each of the 158 variants was annotated and independently classified by two additional laboratories using the ACMG-AMP guidelines. Overall concordance across three laboratories was assessed and discordant variants were reviewed via teleconference and email. The submitted variant set included 28 P/LP variants, 96 VUS, and 34 LB/B variants, mostly in cancer (40%) and cardiac (27%) risk genes. Eighty-six (54%) variants reached complete five-category (i.e., P, LP, VUS, LB, B) concordance, and 17 (11%) had a discordance that could affect clinical recommendations (P/LP versus VUS/LB/B). 21% and 63% of variants submitted as P and LP, respectively, were discordant with VUS. Of the 54 originally discordant variants that underwent further review, 32 reached agreement, for a post-review concordance rate of 84% (118/140 variants). This project provides an updated estimate of variant concordance, identifies considerations for LP classified variants, and highlights ongoing sources of discordance. Continued and increased sharing of variant classifications and evidence across laboratories, and the ongoing work of ClinGen to provide general as well as gene- and disease-specific guidance, will lead to continued increases in concordance.


Assuntos
Doenças Cardiovasculares/genética , Variação Genética , Genômica/normas , Laboratórios/normas , Neoplasias/genética , Doenças Cardiovasculares/diagnóstico , Biologia Computacional/métodos , Testes Genéticos , Genética Médica/métodos , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ensaio de Proficiência Laboratorial/estatística & dados numéricos , Neoplasias/diagnóstico , Análise de Sequência de DNA , Software , Terminologia como Assunto
13.
Sci Rep ; 9(1): 19123, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836783

RESUMO

To test the performance of a new sequencing platform, develop an updated somatic calling pipeline and establish a reference for future benchmarking experiments, we performed whole-genome sequencing of 3 common cancer cell lines (COLO-829, HCC-1143 and HCC-1187) along with their matched normal cell lines to great sequencing depths (up to 278x coverage) on both Illumina HiSeqX and NovaSeq sequencing instruments. Somatic calling was generally consistent between the two platforms despite minor differences at the read level. We designed and implemented a novel pipeline for the analysis of tumor-normal samples, using multiple variant callers. We show that coupled with a high-confidence filtering strategy, the use of combination of tools improves the accuracy of somatic variant calling. We also demonstrate the utility of the dataset by creating an artificial purity ladder to evaluate the somatic pipeline and benchmark methods for estimating purity and ploidy from tumor-normal pairs. The data and results of the pipeline are made accessible to the cancer genomics community.


Assuntos
Perfilação da Expressão Gênica , Neoplasias/genética , Sequenciamento Completo do Genoma/métodos , Algoritmos , Alelos , Calibragem , Linhagem Celular Tumoral , Biologia Computacional , Reações Falso-Positivas , Variação Genética , Genoma Humano , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Reprodutibilidade dos Testes , Análise de Sequência de DNA
14.
Artigo em Inglês | MEDLINE | ID: mdl-31519698

RESUMO

The tumor genome of a patient with advanced pancreatic cancer was sequenced to identify potential therapeutic targetable mutations after standard of care failed to produce any significant overall response. Matched tumor-normal whole-genome sequencing revealed somatic mutations in BRAF, TP53, CDKN2A, and a focal deletion of SMAD4 The BRAF variant was an in-frame deletion mutation (ΔN486_P490), which had been previously demonstrated to be a kinase-activating alteration in the BRAF kinase domain. Working with the Novartis patient assistance program allowed us to treat the patient with the BRAF inhibitor, dabrafenib. The patient's overall clinical condition improved dramatically with dabrafenib. Levels of serum tumor marker dropped immediately after treatment, and a subsequent CT scan revealed a significant decrease in the size of both primary and metastatic lesions. The dabrafenib-induced remission lasted for 6 mo. Preclinical studies published concurrently with the patient's treatment showed that the BRAF in-frame mutation (ΔNVTAP) induces oncogenic activation by a mechanism distinct from that induced by V600E, and that this difference dictates the responsiveness to different BRAF inhibitors. This study describes a dramatic instance of how high-level genomic technology and analysis was necessary and sufficient to identify a clinically logical treatment option that was then utilized and shown to be of clinical value for this individual.


Assuntos
Imidazóis/uso terapêutico , Oximas/uso terapêutico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas B-raf/genética , Adenocarcinoma/genética , Idoso , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Humanos , Neoplasias Pulmonares/genética , Masculino , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/metabolismo , Indução de Remissão , Sequenciamento Completo do Genoma/métodos , Neoplasias Pancreáticas
16.
Int J Cancer ; 145(10): 2754-2766, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31001805

RESUMO

The main risk factor for esophageal dysplasia and adenocarcinoma (DAC) is Barrett's esophagus (BE), characterized by intestinal metaplasia. The critical genomic mechanisms that lead to progression of nondysplastic BE to DAC remain poorly understood and require analyses of longitudinal patient cohorts and high-resolution assays. We tested BE tissues from 74 patients, including 42 nonprogressors from two separate groups of 21 patients each and 32 progressors (16 in a longitudinal cohort before DAC/preprogression-BE and 16 with temporally concurrent but spatially separate DAC/concurrent-BE). We interrogated genome-wide somatic copy number alterations (SCNAs) at the exon level with high-resolution SNP arrays in DNA from formalin-fixed samples histologically confirmed as nondysplastic BE. The most frequent abnormalities were SCNAs involving FHIT exon 5, CDKN2A/B or both in 88% longitudinal BE progressors to DAC vs. 24% in both nonprogressor groups (p = 0.0004). Deletions in other genomic regions were found in 56% of preprogression-BE but only in one nonprogressor-BE (p = 0.0004). SCNAs involving FHIT exon 5 and CDKN2A/B were also frequently detected in BE temporally concurrent with DAC. TP53 losses were detected in concurrent-BE but not earlier in preprogression-BE tissues of patients who developed DAC. CDKN2A/p16 immunohistochemistry showed significant loss of expression in BE of progressors vs. nonprogressors, supporting the genomic data. Our data suggest a role for CDKN2A/B and FHIT in early progression of BE to dysplasia and adenocarcinoma that warrants future mechanistic research. Alterations in CDKN2A/B and FHIT by high-resolution assays may serve as biomarkers of increased risk of progression to DAC when detected in BE tissues.


Assuntos
Adenocarcinoma/patologia , Esôfago de Barrett/genética , Biomarcadores Tumorais/genética , Mucosa Esofágica/patologia , Neoplasias Esofágicas/patologia , Lesões Pré-Cancerosas/genética , Hidrolases Anidrido Ácido/genética , Adulto , Idoso , Esôfago de Barrett/patologia , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Variações do Número de Cópias de DNA , Progressão da Doença , Éxons/genética , Feminino , Humanos , Hibridização in Situ Fluorescente , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Lesões Pré-Cancerosas/patologia , Proteína Supressora de Tumor p53/genética
17.
BMC Med Genomics ; 12(1): 56, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31023376

RESUMO

BACKGROUND: Prompted by the revolution in high-throughput sequencing and its potential impact for treating cancer patients, we initiated a clinical research study to compare the ability of different sequencing assays and analysis methods to analyze glioblastoma tumors and generate real-time potential treatment options for physicians. METHODS: A consortium of seven institutions in New York City enrolled 30 patients with glioblastoma and performed tumor whole genome sequencing (WGS) and RNA sequencing (RNA-seq; collectively WGS/RNA-seq); 20 of these patients were also analyzed with independent targeted panel sequencing. We also compared results of expert manual annotations with those from an automated annotation system, Watson Genomic Analysis (WGA), to assess the reliability and time required to identify potentially relevant pharmacologic interventions. RESULTS: WGS/RNAseq identified more potentially actionable clinical results than targeted panels in 90% of cases, with an average of 16-fold more unique potentially actionable variants identified per individual; 84 clinically actionable calls were made using WGS/RNA-seq that were not identified by panels. Expert annotation and WGA had good agreement on identifying variants [mean sensitivity = 0.71, SD = 0.18 and positive predictive value (PPV) = 0.80, SD = 0.20] and drug targets when the same variants were called (mean sensitivity = 0.74, SD = 0.34 and PPV = 0.79, SD = 0.23) across patients. Clinicians used the information to modify their treatment plan 10% of the time. CONCLUSION: These results present the first comprehensive comparison of technical and machine augmented analysis of targeted panel and WGS/RNA-seq to identify potential cancer treatments.


Assuntos
Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Sequenciamento Completo do Genoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Ploidias , Reprodutibilidade dos Testes
18.
Lancet ; 393(10173): 758-767, 2019 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-30712878

RESUMO

BACKGROUND: Identification of chromosomal aneuploidies and copy number variants that are associated with fetal structural anomalies has substantial value. Although whole-exome sequencing (WES) has been applied to case series of a few selected prenatal cases, its value in routine clinical settings has not been prospectively assessed in a large unselected cohort of fetuses with structural anomalies. We therefore aimed to determine the incremental diagnostic yield (ie, the added value) of WES following uninformative results of standard investigations with karyotype testing and chromosomal microarray in an unselected cohort of sequential pregnancies showing fetal structural anomalies. METHODS: In this prospective cohort study, the parents of fetuses who were found to have a structural anomaly in a prenatal ultrasound were screened for possible participation in the study. These participants were predominantly identified in or were referred to the Columbia University Carmen and John Thain Center for Prenatal Pediatrics (New York, NY, USA). Fetuses with confirmed aneuploidy or a causal pathogenic copy number variant were excluded from WES analyses. By use of WES of the fetuses and parents (parent-fetus trios), we identified genetic variants that indicated an underlying cause (diagnostic genetic variants) and genetic variants that met the criteria of bioinformatic signatures that had previously been described to be significantly enriched among diagnostic genetic variants. FINDINGS: Between April 24, 2015, and April 19, 2017, 517 sequentially identified pregnant women found to have fetuses with a structural anomaly were screened for their eligibility for inclusion in our study. 71 (14%) couples declined testing, 87 (17%) trios were missing at least one DNA sample (from either parent or the fetus), 69 (13%) trios had a clinically relevant abnormal karyotype or chromosomal microarray finding, 51 (10%) couples did not consent to WES or withdrew consent, and five (1%) samples were not of good enough quality for analysis. DNA samples from 234 (45%) eligible trios were therefore used for analysis of the primary outcome. By use of trio sequence data, we identified diagnostic genetic variants in 24 (10%) families. Mutations with bioinformatic signatures that were indicative of pathogenicity but with insufficient evidence to be considered diagnostic were also evaluated; 46 (20%) of the 234 fetuses assessed were found to have such signatures. INTERPRETATION: Our analysis of WES data in a prospective cohort of unselected fetuses with structural anomalies shows the value added by WES following the use of routine genetic tests. Our findings suggest that, in cases of fetal anomalies in which assessment with karyotype testing and chromosomal microarray fail to determine the underlying cause of a structural anomaly, WES can add clinically relevant information that could assist current management of a pregnancy. The unique challenges of WES-based prenatal diagnostics require analysis by a multidisciplinary team of perinatal practitioners and laboratory specialists. FUNDING: Institute for Genomic Medicine (Columbia University Irving Medical Center).


Assuntos
Cariótipo Anormal/embriologia , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Aneuploidia , Variações do Número de Cópias de DNA/genética , Sequenciamento do Exoma/estatística & dados numéricos , Desenvolvimento Fetal/genética , Feto/anormalidades , Anormalidades Múltiplas/epidemiologia , Amniocentese , Amostra da Vilosidade Coriônica , Feminino , Triagem de Portadores Genéticos , Humanos , Masculino , Gravidez , Estudos Prospectivos , Ultrassonografia Pré-Natal , Sequenciamento do Exoma/métodos
19.
J Mol Diagn ; 20(6): 822-835, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30138725

RESUMO

We developed and validated a clinical whole-genome and transcriptome sequencing (WGTS) assay that provides a comprehensive genomic profile of a patient's tumor. The ability to fully capture the mappable genome with sufficient sequencing coverage to precisely call DNA somatic single nucleotide variants, insertions/deletions, copy number variants, structural variants, and RNA gene fusions was analyzed. New York State's Department of Health next-generation DNA sequencing guidelines were expanded for establishing performance validation applicable to whole-genome and transcriptome sequencing. Whole-genome sequencing laboratory protocols were validated for the Illumina HiSeq X Ten platform and RNA sequencing for Illumina HiSeq2500 platform for fresh or frozen and formalin-fixed, paraffin-embedded tumor samples. Various bioinformatics tools were also tested, and CIs for sensitivity and specificity thresholds in calling clinically significant somatic aberrations were determined. The validation was performed on a set of 125 tumor normal pairs. RNA sequencing was performed to call fusions and to confirm the DNA variants or exonic alterations. Here, we present our results and WGTS standards for variant allele frequency, reproducibility, analytical sensitivity, and present limit of detection analysis for single nucleotide variant calling, copy number identification, and structural variants. We show that The New York Genome Center WGTS clinical assay can provide a comprehensive patient variant discovery approach suitable for directed oncologic therapeutic applications.


Assuntos
Variação Genética , Neoplasias/genética , Relatório de Pesquisa , Transcriptoma/genética , Sequenciamento Completo do Genoma/métodos , Variações do Número de Cópias de DNA/genética , Frequência do Gene/genética , Humanos , Limite de Detecção , Reprodutibilidade dos Testes
20.
Methods Mol Biol ; 1741: 1-29, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29392687

RESUMO

Next-generation DNA sequencing (NGS) technologies are currently being applied in both research and clinical settings for the understanding and management of disease. The goal is to use high-throughput sequencing to identify specific variants that drive tumorigenesis within each individual's tumor genomic profile. The significance of copy number and structural variants in glioblastoma makes it essential to broaden the search beyond oncogenic single nucleotide variants toward whole genome profiles of genetic aberrations that may contribute to disease progression. The heterogeneity of glioblastoma and its variability of cancer driver mutations necessitate a more robust examination of a patient's tumor genome. Here, we present patient whole genome sequencing (WGS) information to identify oncogenic structural variants that may contribute to glioblastoma pathogenesis. We provide WGS protocols and bioinformatics approaches to identify copy number and structural variations in 41 glioblastoma patient samples. We present how WGS can identify structural diversity within glioblastoma samples. We specifically show how to apply current bioinformatics tools to detect EGFR variants and other structural aberrations from DNA whole genome sequencing and how to validate those variants within the laboratory. These comprehensive WGS protocols can provide additional information directing more precise therapeutic options in the treatment of glioblastoma.


Assuntos
Variação Genética , Genoma Humano , Glioblastoma/genética , Sequenciamento Completo do Genoma , Biomarcadores Tumorais , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Receptores ErbB/genética , Expressão Gênica , Glioblastoma/patologia , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , Medicina de Precisão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA