Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 25(12): 2620-2634, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-28967558

RESUMO

Oncolytic virotherapy may be a means of improving the dismal prognosis of malignant brain tumors. The rat H-1 parvovirus (H-1PV) suppresses tumors in preclinical glioma models, through both direct oncolysis and stimulation of anticancer immune responses. This was the basis of ParvOryx01, the first phase I/IIa clinical trial of an oncolytic parvovirus in recurrent glioblastoma patients. H-1PV (escalating dose) was administered via intratumoral or intravenous injection. Tumors were resected 9 days after treatment, and virus was re-administered around the resection cavity. Primary endpoints were safety and tolerability, virus distribution, and maximum tolerated dose (MTD). Progression-free and overall survival and levels of viral and immunological markers in the tumor and peripheral blood were also investigated. H-1PV treatment was safe and well tolerated, and no MTD was reached. The virus could cross the blood-brain/tumor barrier and spread widely through the tumor. It showed favorable pharmacokinetics, induced antibody formation in a dose-dependent manner, and triggered specific T cell responses. Markers of virus replication, microglia/macrophage activation, and cytotoxic T cell infiltration were detected in infected tumors, suggesting that H-1PV may trigger an immunogenic stimulus. Median survival was extended in comparison with recent meta-analyses. Altogether, ParvOryx01 results provide an impetus for further H-1PV clinical development.


Assuntos
Terapia Genética , Vetores Genéticos/genética , Glioblastoma/genética , Glioblastoma/terapia , Parvovirus H-1/genética , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Feminino , Expressão Gênica , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/imunologia , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Terapia Viral Oncolítica/efeitos adversos , Terapia Viral Oncolítica/métodos , Radioterapia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Transgenes , Resultado do Tratamento
2.
Comp Med ; 65(1): 36-45, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25730755

RESUMO

The autonomous parvovirus H1 (H1PV) is transmitted in rodent populations. The natural host is the rat, in which H1PV infection is pathogenic only in fetuses and newborns. H1PV infection of human cancer cells leads to strong oncolytic effects in preclinical models. In preparation for a clinical trial of H1PV injection in patients with malignant brain tumors, H1PV had to be prepared to Good Manufacturing Practice standards, including extensive toxicology testing in rats. Because the trial involves direct intracerebral injection of H1PV into the tumor and around the resection cavity, possible toxicity to CNS tissue had to be investigated. In addition, quantitative blood levels and the tissue distribution of H1PV after single intracerebral or intravenous injection were measured. Direct injection of H1PV into rat brain at 3 dose levels (maximum, 7.96 × 107 pfu) did not cause any macroscopic or histologic pathology. Furthermore, H1PV infection of the brain did not alter central or autonomous nervous system function. H1PV DNA was detected in almost all organs at 6 h, 48 h, and 14 d after intravenous and intracerebral injection, with the highest levels in liver and spleen. H1PV concentrations in most organs were similar after intravenous and intracerebral injection, indicating high permeability of the blood-brain barrier for this small virus. The current results demonstrate wide organ distribution of H1PV after intravenous or intracerebral injection, confirm that H1PV is nonpathogenic in adult rats even after direct injection into the brain, and form the basis for the ongoing ParvOryx01 clinical trial.


Assuntos
Sistema Nervoso Central/virologia , Parvovirus H-1/patogenicidade , Terapia Viral Oncolítica/métodos , Animais , Disponibilidade Biológica , Sistema Nervoso Central/patologia , DNA Viral/metabolismo , Avaliação Pré-Clínica de Medicamentos , Injeções Intravenosas , Fígado/virologia , Terapia Viral Oncolítica/normas , Ratos , Baço/virologia , Fatores de Tempo , Carga Viral
3.
Comp Med ; 65(1): 23-35, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25730754

RESUMO

Parvovirus H1 (H1PV) is an autonomous parvovirus that is transmitted in rodent populations. Its natural host is rats. H1PV infection is nonpathogenic except in rat and hamster fetuses and newborns. H1PV infection of human cancer cells caused strong oncolytic effects in preclinical models. For a clinical trial of H1PV in patients with brain tumors, clinical-grade H1PV was produced according to Good Manufacturing Practices. This report focuses on results obtained after a single high-dose intravenous injection of highly purified H1PV in 30 rats and multiple (n = 17) intravenous injections at 3 dose levels in 223 rats. In both studies, no virus-related mortality or macroscopic organ changes related to H1PV occurred. Histopathology after multiple virus injections revealed minimal diffuse bile duct hyperplasia in livers of animals of the highest dose group and germinal center development in spleens of animals from the high-dose group. Liver changes were reversible within a 2-wk recovery period after the last injection. Hematology, blood chemistry, and coagulation analyses did not reveal significant toxicologic changes due to H1PV. Virus injection stimulated the production of IgG antibodies but did not alter mononuclear cell function or induce cytokine release. PCR analysis showed dose-dependent levels of viral genomes in all organs tested. The virus was excreted primarily through feces. These data provide important information regarding H1PV infection in its natural host. Due to the confirmation of the favorable safety profile of H1PV in a permissive animal model, a phase I/IIa clinical trial of H1PV in brain tumor patients could be initiated.


Assuntos
Genoma Viral/genética , Parvovirus H-1/patogenicidade , Terapia Viral Oncolítica/métodos , Infecções por Parvoviridae/imunologia , Infecções por Parvoviridae/patologia , Animais , Análise Química do Sangue , Testes de Coagulação Sanguínea , Relação Dose-Resposta Imunológica , Avaliação Pré-Clínica de Medicamentos , Fezes/virologia , Parvovirus H-1/genética , Imunoglobulina G/imunologia , Injeções Intravenosas , Fígado/patologia , Reação em Cadeia da Polimerase , Ratos , Baço/patologia
4.
Cancer Res ; 68(23): 9788-98, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19047158

RESUMO

We have previously described a small interfering RNA (siRNA) delivery system (AtuPLEX) for RNA interference (RNAi) in the vasculature of mice. Here we report preclinical data for Atu027, a siRNA-lipoplex directed against protein kinase N3 (PKN3), currently under development for the treatment of advanced solid cancer. In vitro studies revealed that Atu027-mediated inhibition of PKN3 function in primary endothelial cells impaired tube formation on extracellular matrix and cell migration, but is not essential for proliferation. Systemic administration of Atu027 by repeated bolus injections or infusions in mice, rats, and nonhuman primates results in specific, RNAi-mediated silencing of PKN3 expression. We show the efficacy of Atu027 in orthotopic mouse models for prostate and pancreatic cancers with significant inhibition of tumor growth and lymph node metastasis formation. The tumor vasculature of Atu027-treated animals showed a specific reduction in lymph vessel density but no significant changes in microvascular density.


Assuntos
Neoplasias Pancreáticas/terapia , Neoplasias da Próstata/terapia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Animais , Processos de Crescimento Celular/fisiologia , Progressão da Doença , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Células HeLa , Humanos , Lipossomos/administração & dosagem , Metástase Linfática , Macaca fascicularis , Masculino , Camundongos , Camundongos SCID , Neovascularização Patológica/enzimologia , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Neovascularização Patológica/terapia , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Interferência de RNA , Ratos , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA