Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
4.
Arch Pharm (Weinheim) ; 356(9): e2300149, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37339785

RESUMO

Anticancer drug conjugates are an emerging approach for future cancer treatment. Here, we report a series of hybrid ligands merging the neurohormone melatonin with the approved histone deacetylase (HDAC) inhibitor vorinostat, using melatonin's amide side chain (3a-e), its indolic nitrogen (5a-d), and its ether oxygen (7a-d) as attachment points. Several hybrid ligands showed higher potency thanvorinostat in both HDAC inhibition and cellular assays on different cultured cancer cell lines. In the most potent HDAC1 and HDAC6 inhibitors, 3e, 5c, and 7c, the hydroxamic acid moiety of vorinostat is linked to melatonin through a hexamethylene spacer. Hybrid ligands 5c and 7c were also found to be potent growth inhibitors of MCF-7, PC-3M-Luc, and HL-60 cancer cell lines. As these compounds showed only weak agonist activity at melatonin MT1 receptors, the findings indicate that their anticancer actions are driven by HDAC inhibition.


Assuntos
Antineoplásicos , Melatonina , Neoplasias , Vorinostat/farmacologia , Histona Desacetilases/metabolismo , Histona Desacetilases/farmacologia , Melatonina/farmacologia , Ligantes , Relação Estrutura-Atividade , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Ácidos Hidroxâmicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/farmacologia , Desacetilase 6 de Histona
6.
PLoS One ; 17(12): e0278965, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36512575

RESUMO

Abnormally high serum homocysteine levels have been associated with several disorders, including obesity, cardiovascular diseases or neurological diseases. Leptin is an anti-obesity protein and its action is mainly mediated by the activation of its Ob-R receptor in neuronal cells. The inability of leptin to induce activation of its specific signaling pathways, especially under endoplasmic reticulum stress, leads to the leptin resistance observed in obesity. The present study examined the effect of homocysteine on leptin signaling in SH-SY5Y neuroblastoma cells expressing the leptin receptor Ob-Rb. Phosphorylation of the signal transducer and activator of transcription (STAT3) and leptin-induced STAT3 transcriptional activity were significantly inhibited by homocysteine treatment. These effects may be specific to homocysteine and to the leptin pathway, as other homocysteine-related compounds, namely methionine and cysteine, have weak effect on leptin-induced inhibition of STAT3 phosphorylation, and homocysteine has no impact on IL-6-induced activation of STAT3. The direct effect of homocysteine on leptin-induced Ob-R activation, analyzed by Ob-R BRET biosensor to monitor Ob-R oligomerization and conformational change, suggested that homocysteine treatment does not affect early events of leptin-induced Ob-R activation. Instead, we found that, unlike methionine or cysteine, homocysteine increases the expression of the endoplasmic reticulum (ER) stress response gene, a homocysteine-sensitive ER resident protein. These results suggest that homocysteine may induce neuronal resistance to leptin by suppressing STAT3 phosphorylation downstream of the leptin receptor via ER stress.


Assuntos
Leptina , Neuroblastoma , Humanos , Leptina/metabolismo , Receptores para Leptina/genética , Homocisteína/farmacologia , Cisteína/farmacologia , Estresse do Retículo Endoplasmático , Fator de Transcrição STAT3/metabolismo , Obesidade/metabolismo , Metionina/farmacologia
7.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142542

RESUMO

Despite decades of effort in understanding pancreatic ductal adenocarcinoma (PDAC), there is still a lack of innovative targeted therapies for this devastating disease. Herein, we report the expression of apelin and its receptor, APJ, in human pancreatic adenocarcinoma and its protumoral function. Apelin and APJ protein expression in tumor tissues from patients with PDAC and their spatiotemporal pattern of expression in engineered mouse models of PDAC were investigated by immunohistochemistry. Apelin signaling function in tumor cells was characterized in pancreatic tumor cell lines by Western blot as well as proliferation, migration assays and in murine orthotopic xenograft experiments. In premalignant lesions, apelin was expressed in epithelial lesions whereas APJ was found in isolated cells tightly attached to premalignant lesions. However, in the invasive stage, apelin and APJ were co-expressed by tumor cells. In human tumor cells, apelin induced a long-lasting activation of PI3K/Akt, upregulated ß-catenin and the oncogenes c-myc and cyclin D1 and promoted proliferation, migration and glucose uptake. Apelin receptor blockades reduced cancer cell proliferation along with a reduction in pancreatic tumor burden. These findings identify the apelin signaling pathway as a new actor for PDAC development and a novel therapeutic target for this incurable disease.


Assuntos
Adenocarcinoma , Receptores de Apelina/metabolismo , Apelina/metabolismo , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/genética , Ciclina D1/metabolismo , Glucose , Humanos , Camundongos , Oncogenes , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Neoplasias Pancreáticas
8.
Methods Mol Biol ; 2550: 179-188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36180691

RESUMO

Cyclic adenosine monophosphate (cAMP) is an important ubiquitous second messenger and one of the major pathways transducing the activation of G protein-coupled receptors (GPCRs). Quantifying intracellular levels of cAMP in an accurate and high-throughput manner is, therefore, of high interest to access functional responses of GPCRs. The neurohormone melatonin is selectively recognized by two GPCRs in mammals, named MT1 and MT2. Both have an inhibitory action on intracellular cAMP levels. Here, we describe a homogeneous high-throughput-compatible methodology routinely used in our laboratory to measure cAMP levels following activation of melatonin receptors.


Assuntos
Melatonina , Monofosfato de Adenosina , Animais , AMP Cíclico/metabolismo , Mamíferos/metabolismo , Melatonina/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Melatonina
9.
Eur J Cancer ; 170: 27-41, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35580369

RESUMO

BACKGROUND AND AIM OF THE STUDY: Mutations in the Gα-genes GNAQ and GNA11 are found in 85-90% of uveal melanomas (UM). Aim of the study is to understand whether the mutations in both genes differentially affect tumor characteristics and outcome and if so, to identify potential mechanisms. METHODS: We analyzed the association between GNAQ and GNA11 mutations with disease-specific survival, gene expression profiles, and cytogenetic alterations in 219 UMs. We used tandem-affinity-purification, mass spectrometry and immunoprecipitation to identify protein interaction partners of the two G-proteins and analyzed their impact on DNA-methylation. RESULTS: GNA11 mutation was associated with: i) an increased frequency of loss of BRCA1-associated protein 1 (BAP1) expression (p = 0.0005), ii) monosomy of chromosome 3 (p < 0.001), iii) amplification of chr8q (p = 0.038), iv) the combination of the latter two (p = 0.0002), and inversely with v) chr6p gain (p = 0.003). Our analysis also showed a shorter disease-specific survival of GNA11-mutated cases as compared to those carrying a GNAQ mutation (HR = 1.97 [95%CI 1.12-3.46], p = 0.02). GNAQ and GNA11 encoded G-proteins have different protein interaction partners. Specifically, the Tet Methylcytosine Dioxygenase 2 (TET2), a protein that is involved in DNA demethylation, physically interacts with the GNAQ protein but not with GNA11, as confirmed by immunoprecipitation analyses. High-risk UM cases show a clearly different DNA-methylation pattern, suggesting that a different regulation of DNA methylation by the two G-proteins might convey a different risk of progression. CONCLUSIONS: GNA11 mutated uveal melanoma has worse prognosis and is associated with high risk cytogenetic, mutational and molecular tumor characteristics that might be determined at least in part by differential DNA-methylation.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Subunidades alfa de Proteínas de Ligação ao GTP , Melanoma , Neoplasias Uveais , Aberrações Cromossômicas , Análise Mutacional de DNA , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Humanos , Melanoma/patologia , Mutação , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Neoplasias Uveais/genética , Neoplasias Uveais/patologia
11.
Nat Metab ; 3(8): 1071-1090, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34341568

RESUMO

Metabolic health depends on the brain's ability to control food intake and nutrient use versus storage, processes that require peripheral signals such as the adipocyte-derived hormone, leptin, to cross brain barriers and mobilize regulatory circuits. We have previously shown that hypothalamic tanycytes shuttle leptin into the brain to reach target neurons. Here, using multiple complementary models, we show that tanycytes express functional leptin receptor (LepR), respond to leptin by triggering Ca2+ waves and target protein phosphorylation, and that their transcytotic transport of leptin requires the activation of a LepR-EGFR complex by leptin and EGF sequentially. Selective deletion of LepR in tanycytes blocks leptin entry into the brain, inducing not only increased food intake and lipogenesis but also glucose intolerance through attenuated insulin secretion by pancreatic ß-cells, possibly via altered sympathetic nervous tone. Tanycytic LepRb-EGFR-mediated transport of leptin could thus be crucial to the pathophysiology of diabetes in addition to obesity, with therapeutic implications.


Assuntos
Encéfalo/metabolismo , Células Ependimogliais/metabolismo , Receptores ErbB/metabolismo , Leptina/metabolismo , Metabolismo dos Lipídeos , Pâncreas/metabolismo , Receptores para Leptina/metabolismo , Diabetes Mellitus/etiologia , Diabetes Mellitus/metabolismo , Metabolismo Energético , Células Secretoras de Insulina/metabolismo , Fosforilação
12.
J Biol Chem ; 296: 100133, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33268378

RESUMO

Receptors for the peptide hormones glucagon-like peptide-1 (GLP-1R), glucose-dependent insulinotropic polypeptide (GIPR), and glucagon (GCGR) are important regulators of insulin secretion and energy metabolism. GLP-1R agonists have been successfully deployed for the treatment of type 2 diabetes, but it has been suggested that their efficacy is limited by target receptor desensitization and downregulation due to recruitment of ß-arrestins. Indeed, recently described GLP-1R agonists with reduced ß-arrestin-2 recruitment have delivered promising results in preclinical and clinical studies. We therefore aimed to determine if the same phenomenon could apply to the closely related GIPR and GCGR. In HEK293 cells depleted of both ß-arrestin isoforms the duration of G protein-dependent cAMP/PKA signaling was increased in response to the endogenous ligand for each receptor. Moreover, in wildtype cells, "biased" GLP-1, GCG, and GIP analogs with selective reductions in ß-arrestin-2 recruitment led to reduced receptor endocytosis and increased insulin secretion over a prolonged stimulation period, although the latter effect was only seen at high agonist concentrations. Biased GCG analogs increased the duration of cAMP signaling, but this did not lead to increased glucose output from hepatocytes. Our study provides a rationale for the development of GLP-1R, GIPR, and GCGR agonists with reduced ß-arrestin recruitment, but further work is needed to maximally exploit this strategy for therapeutic purposes.


Assuntos
AMP Cíclico/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Incretinas/farmacologia , Receptores dos Hormônios Gastrointestinais/metabolismo , beta-Arrestinas/metabolismo , Animais , Polipeptídeo Inibidor Gástrico/genética , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Células HEK293 , Humanos , Secreção de Insulina , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Receptores dos Hormônios Gastrointestinais/genética , Transdução de Sinais , beta-Arrestinas/genética
13.
Cell Mol Life Sci ; 76(6): 1201-1214, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30659329

RESUMO

Leptin links body energy stores to high energy demanding processes like reproduction and immunity. Based on leptin's role in autoimmune diseases and cancer, several leptin and leptin receptor (LR) antagonists have been developed, but these intrinsically lead to unwanted weight gain. Here, we report on the uncoupling of leptin's metabolic and immune functions based on the cross talk with the epidermal growth factor receptor (EGFR). We show that both receptors spontaneously interact and, remarkably, that this complex can partially overrule the lack of LR activation by a leptin antagonistic mutein. Moreover, this leptin mutant induces EGFR phosphorylation comparable to wild-type leptin. Exploiting this non-canonical leptin signalling pathway, we identified a camelid single-domain antibody that selectively inhibits this LR-EGFR cross talk without interfering with homotypic LR signalling. Administration in vivo showed that this single-domain antibody did not interfere with leptin's metabolic functions, but could reverse the leptin-driven protection against starvation-induced thymic and splenic atrophy. These findings offer new opportunities for the design and clinical application of selective leptin and LR antagonists that avoid unwanted metabolic side effects.


Assuntos
Leptina/imunologia , Leptina/metabolismo , Receptores para Leptina/antagonistas & inibidores , Receptores para Leptina/metabolismo , Anticorpos de Domínio Único/farmacologia , Animais , Camelídeos Americanos/imunologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Células HEK293 , Humanos , Leptina/genética , Ligantes , Camundongos Endogâmicos C57BL , Mutação , Ligação Proteica/efeitos dos fármacos , Receptor Cross-Talk/efeitos dos fármacos , Receptores para Leptina/genética , Transdução de Sinais
14.
Bioorg Chem ; 85: 349-356, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30658234

RESUMO

A series of dimeric melatonin analogues 3a-e obtained by connecting two melatonin molecules through the methoxy oxygen atoms with spacers spanning 16-24 atoms and the agomelatine dimer 7 were synthesized and characterized in 2-[125-I]-iodomelatonin binding assays, bioluminescence resonance energy transfer (BRET) experiments, and in functional cAMP and ß-arrestin recruitment assays at MT1 and MT2 receptors. The binding affinity of 3a-e generally increased with increasing linker length. Bivalent ligands 3a-e increased BRET signals of MT1 dimers up to 3-fold compared to the monomeric control ligand indicating the simultaneous binding of the two pharmacophores to dimeric receptors. Bivalent ligands 3c and 7 exhibited important changes in functional properties on the Gi/cAMP pathway but not on the ß-arrestin pathway compared to their monomeric counterparts. Interestingly, 3c (20 atoms spacer) shows inverse agonistic properties at MT2 on the Gi/cAMP pathway. In conclusion, these findings indicate that O-linked melatonin dimers are promising tools to develop signaling pathway-based bivalent melatonin receptor ligands.


Assuntos
Melatonina/análogos & derivados , Melatonina/farmacologia , Receptor MT1 de Melatonina/agonistas , Receptor MT2 de Melatonina/agonistas , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , AMP Cíclico/metabolismo , Agonismo Inverso de Drogas , Células HEK293 , Humanos , Ligantes , Melatonina/metabolismo , Estrutura Molecular , Multimerização Proteica/efeitos dos fármacos , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/metabolismo , beta-Arrestinas/metabolismo
15.
Biochem Pharmacol ; 158: 45-59, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30236477

RESUMO

Neuroplin 1 (NRP1), a transmembrane protein interacting with Vascular Endothelial Growth Factor VEGF-A165 (called here VEGF165) and the tyrosine kinase Receptor 2 (VEGFR2) promote angiogenesis and vascular homeostasis. In a pathophysiological context, several studies suggested that VEGFR2 and NRP1 mediate tumor development and progression. Given the involvement of the VEGF165 network in promoting tumor angiogenesis, NRP1, VEGFR2 and VEGF165 have been identified as targets for anti-angiogenic therapy. No binding assay exists to monitor specifically the binding of VEGF165 to the VEGFR2/NRP1 complex in intact cells. We established a binding assay based on the homogenous time-resolved fluorescence (HTRF®) technology. This unique binding assay enables to assess the interaction of VEGF165 with VEGFR2 or NRP1 within the VEGFR2/NRP1 complex. Ligand binding saturation experiments revealed that VEGF165 binds the VEGFR2/NRP1 complex at the cell surface with a ten to twenty-fold higher affinity compared to SNAP-VEGFR2 or SNAP-NRP1 receptors alone not engaged in the heteromeric complex. The assay allows characterizing the impact of NRP1 ligands on VEGF165 to the complex. It shows high specificity, reproducibility and robustness, making it compatible with high throughput screening (HTS) applications for identifying new VEGF165 antagonists selective for NRP1 or the VEGFR2/NRP1 complex.


Assuntos
Neuropilina-1/metabolismo , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Fator A de Crescimento do Endotélio Vascular/farmacologia
16.
Oncoscience ; 5(5-6): 157-158, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-30035175
17.
Sci Rep ; 8(1): 8142, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802269

RESUMO

Structural studies of integral membrane proteins have been limited by the intrinsic conformational flexibility and the need to stabilize the proteins in solution. Stabilization by mutagenesis was very successful for structural biology of G protein-coupled receptors (GPCRs). However, it requires heavy protein engineering and may introduce structural deviations. Here we describe the use of specific calixarenes-based detergents for native GPCR stabilization. Wild type, full length human adenosine A2A receptor was used to exemplify the approach. We could stabilize native, glycosylated, non-aggregated and homogenous A2AR that maintained its ligand binding capacity. The benefit of the preparation for fragment screening, using the Saturation-Transfer Difference nuclear magnetic resonance (STD-NMR) experiment is reported. The binding of the agonist adenosine and the antagonist caffeine were observed and competition experiments with CGS-21680 and ZM241385 were performed, demonstrating the feasibility of the STD-based fragment screening on the native A2A receptor. Interestingly, adenosine was shown to bind a second binding site in the presence of the agonist CGS-21680 which corroborates published results obtained with molecular dynamics simulation. Fragment-like compounds identified using STD-NMR showed antagonistic effects on A2AR in the cAMP cellular assay. Taken together, our study shows that stabilization of native GPCRs represents an attractive approach for STD-based fragment screening and drug design.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Espectroscopia de Ressonância Magnética , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/metabolismo , AMP Cíclico/metabolismo , Humanos , Ligantes , Modelos Moleculares , Conformação Proteica , Estabilidade Proteica , Solubilidade
18.
Nat Commun ; 9(1): 1216, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29572483

RESUMO

Transforming growth factor-ß (TGFß) signaling is initiated by the type I, II TGFß receptor (TßRI/TßRII) complex. Here we report the formation of an alternative complex between TßRI and the orphan GPR50, belonging to the G protein-coupled receptor super-family. The interaction of GPR50 with TßRI induces spontaneous TßRI-dependent Smad and non-Smad signaling by stabilizing the active TßRI conformation and competing for the binding of the negative regulator FKBP12 to TßRI. GPR50 overexpression in MDA-MB-231 cells mimics the anti-proliferative effect of TßRI and decreases tumor growth in a xenograft mouse model. Inversely, targeted deletion of GPR50 in the MMTV/Neu spontaneous mammary cancer model shows decreased survival after tumor onset and increased tumor growth. Low GPR50 expression is associated with poor survival prognosis in human breast cancer irrespective of the breast cancer subtype. This describes a previously unappreciated spontaneous TGFß-independent activation mode of TßRI and identifies GPR50 as a TßRI co-receptor with potential impact on cancer development.


Assuntos
Neoplasias Mamárias Animais/prevenção & controle , Proteínas do Tecido Nervoso/fisiologia , Receptor do Fator de Crescimento Transformador beta Tipo I/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Endossomos/metabolismo , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Neoplasias Mamárias Animais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Proteínas do Tecido Nervoso/genética , Análise de Sequência com Séries de Oligonucleotídeos , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Proteínas Smad/metabolismo , Proteína 1A de Ligação a Tacrolimo/metabolismo
19.
Sci Rep ; 7(1): 8990, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827538

RESUMO

Understanding the function of orphan G protein-coupled receptors (GPCRs), whose cognate ligand is unknown, is of major importance as GPCRs are privileged drug targets for many diseases. Recent phylogenetic studies classified three orphan receptors, GPR61, GPR62 and GPR135 among the melatonin receptor subfamily, but their capacity to bind melatonin and their biochemical functions are not well characterized yet. We show here that GPR61, GPR62 and GPR135 do not bind [3H]-melatonin nor 2-[125I]iodomelatonin and do not respond to melatonin in several signaling assays. In contrast, the three receptors show extensive spontaneous ligand-independent activities on the cAMP, inositol phosphate and ß-arrestin pathways with distinct pathway-specific profiles. Spontaneous ß-arrestin recruitment internalizes all three GPRs in the endosomal compartment. Co-expression of the melatonin binding MT2 receptor with GPR61, GPR62 or GPR135 has several consequences such as (i) the formation of receptor heteromers, (ii) the inhibition of melatonin-induced ß-arrestin2 recruitment to MT2 and (iii) the decrease of elevated cAMP levels upon melatonin stimulation in cells expressing spontaneously active GPR61 and GPR62. Collectively, these data show that GPR61, GPR62 and GPR135 are unable to bind melatonin, but show a reciprocal regulatory interaction with MT2 receptors.


Assuntos
Melatonina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptor MT2 de Melatonina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Fosfatos de Inositol/metabolismo , beta-Arrestinas/metabolismo
20.
Mol Syst Biol ; 13(3): 918, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28298427

RESUMO

G-protein-coupled receptors (GPCRs) are the largest family of integral membrane receptors with key roles in regulating signaling pathways targeted by therapeutics, but are difficult to study using existing proteomics technologies due to their complex biochemical features. To obtain a global view of GPCR-mediated signaling and to identify novel components of their pathways, we used a modified membrane yeast two-hybrid (MYTH) approach and identified interacting partners for 48 selected full-length human ligand-unoccupied GPCRs in their native membrane environment. The resulting GPCR interactome connects 686 proteins by 987 unique interactions, including 299 membrane proteins involved in a diverse range of cellular functions. To demonstrate the biological relevance of the GPCR interactome, we validated novel interactions of the GPR37, serotonin 5-HT4d, and adenosine ADORA2A receptors. Our data represent the first large-scale interactome mapping for human GPCRs and provide a valuable resource for the analysis of signaling pathways involving this druggable family of integral membrane proteins.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Receptores Acoplados a Proteínas G/metabolismo , Membrana Celular/metabolismo , Humanos , Receptor A2A de Adenosina/metabolismo , Receptores 5-HT4 de Serotonina/metabolismo , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA