Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 7(7)2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35393948

RESUMO

Radiation causes a collapse of bone marrow cells and elimination of microvasculature. To understand how bone marrow recovers after radiation, we focused on mesenchymal lineage cells that provide a supportive microenvironment for hematopoiesis and angiogenesis in bone. We recently discovered a nonproliferative subpopulation of marrow adipogenic lineage precursors (MALPs) that express adipogenic markers with no lipid accumulation. Single-cell transcriptomic analysis revealed that MALPs acquire proliferation and myofibroblast features shortly after radiation. Using an adipocyte-specific Adipoq-Cre, we validated that MALPs rapidly and transiently expanded at day 3 after radiation, coinciding with marrow vessel dilation and diminished marrow cellularity. Concurrently, MALPs lost most of their cell processes, became more elongated, and highly expressed myofibroblast-related genes. Radiation activated mTOR signaling in MALPs that is essential for their myofibroblast conversion and subsequent bone marrow recovery at day 14. Ablation of MALPs blocked the recovery of bone marrow vasculature and cellularity, including hematopoietic stem and progenitors. Moreover, VEGFa deficiency in MALPs delayed bone marrow recovery after radiation. Taken together, our research demonstrates a critical role of MALPs in mediating bone marrow repair after radiation injury and sheds light on a cellular target for treating marrow suppression after radiotherapy.


Assuntos
Medula Óssea , Miofibroblastos , Adipogenia , Células da Medula Óssea , Diferenciação Celular
2.
Am J Med Genet A ; 176(11): 2419-2424, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30246918

RESUMO

Osteogenesis imperfecta (OI) is a family of heritable disorders of bone fragility. Most individuals with OI have mutations in the genes encoding type I collagen; at least 17 other genes have been associated with OI. Biallelic loss-of-function mutations in WNT1 cause severe OI. Heterozygous missense variants in WNT1 are responsible for early-onset osteoporosis with variable bone phenotypes. Herein, we report a third-generation family with four affected individuals, some presenting with multiple low-impact fractures in childhood and others presenting with early-onset osteoporosis without a striking fracture history. A WNT1 variant (c. 1051 > C; p.Trp351Arg) was identified in the proband and segregated with a bone phenotype in three additional family members, consistent with autosomal dominant inheritance. In the proband, whole genome sequencing also revealed a de novo duplication (434 kb) of 22q11.2 that involves 25 genes, 4 of which are associated with human disease when haploinsufficient. Though smaller than the typical (1.5 Mb) 22q11.2 duplication, the duplication in the proband may be responsible for additional nonosseous aspects of his phenotype (hypotonia, developmental delay, small genitalia, strabismus, and depression in preadolescence). This case demonstrates the variability of bone phenotype conferred by a WNT1 variant and extends the spectrum of bone phenotypes associated with heterozygous WNT1 mutations.


Assuntos
Osso e Ossos/patologia , Variação Genética , Proteína Wnt1/genética , Adolescente , Idoso de 80 Anos ou mais , Osso e Ossos/diagnóstico por imagem , Criança , Pré-Escolar , Duplicação Cromossômica , Cromossomos Humanos Par 22/genética , Sequência Conservada , Feminino , Heterozigoto , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo
3.
J Clin Invest ; 127(7): 2678-2688, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28628032

RESUMO

Mutations in WNT1 cause osteogenesis imperfecta (OI) and early-onset osteoporosis, identifying it as a key Wnt ligand in human bone homeostasis. However, how and where WNT1 acts in bone are unclear. To address this mechanism, we generated late-osteoblast-specific and osteocyte-specific WNT1 loss- and gain-of-function mouse models. Deletion of Wnt1 in osteocytes resulted in low bone mass with spontaneous fractures similar to that observed in OI patients. Conversely, Wnt1 overexpression from osteocytes stimulated bone formation by increasing osteoblast number and activity, which was due in part to activation of mTORC1 signaling. While antiresorptive therapy is the mainstay of OI treatment, it has limited efficacy in WNT1-related OI. In this study, anti-sclerostin antibody (Scl-Ab) treatment effectively improved bone mass and dramatically decreased fracture rate in swaying mice, a model of global Wnt1 loss. Collectively, our data suggest that WNT1-related OI and osteoporosis are caused in part by decreased mTORC1-dependent osteoblast function resulting from loss of WNT1 signaling in osteocytes. As such, this work identifies an anabolic function of osteocytes as a source of Wnt in bone development and homoeostasis, complementing their known function as targets of Wnt signaling in regulating osteoclastogenesis. Finally, this study suggests that Scl-Ab is an effective genotype-specific treatment option for WNT1-related OI and osteoporosis.


Assuntos
Fraturas Ósseas/metabolismo , Homeostase , Osteócitos/metabolismo , Osteogênese Imperfeita/metabolismo , Osteoporose/metabolismo , Via de Sinalização Wnt , Proteína Wnt1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Anticorpos/farmacologia , Fraturas Ósseas/tratamento farmacológico , Fraturas Ósseas/genética , Fraturas Ósseas/patologia , Glicoproteínas/antagonistas & inibidores , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Transgênicos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Osteócitos/patologia , Osteogênese Imperfeita/tratamento farmacológico , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/patologia , Osteoporose/tratamento farmacológico , Osteoporose/genética , Osteoporose/patologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína Wnt1/genética
4.
Mol Genet Metab ; 117(3): 378-82, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26693895

RESUMO

Osteogenesis imperfecta (OI) is a group of genetic disorders characterized by bone fragility and deformity. OI type VI is unique owing to the mineralization defects observed in patient biopsies. Furthermore, it has been reported to respond less well to standard therapy with bisphosphonates [1]. Others and we have previously identified SERPINF1 mutations in patients with OI type VI. SERPINF1 encodes pigment epithelium derived factor (PEDF), a secreted collagen-binding glycoprotein that is absent in the sera of patients with OI type VI. Serpinf1 null mice show increased osteoid and decreased bone mass, and thus recapitulate the OI type VI phenotype. We tested whether restoration of circulating PEDF in the blood could correct the phenotype of OI type VI in the context of protein replacement. To do so, we utilized a helper-dependent adenoviral vector (HDAd) to express human SERPINF1 in the mouse liver and assessed whether PEDF secreted from the liver was able to rescue the bone phenotype observed in Serpinf1(-/-) mice. We confirmed that expression of SERPINF1 in the liver restored the serum level of PEDF. We also demonstrated that PEDF secreted from the liver was biologically active by showing the expected metabolic effects of increased adiposity and impaired glucose tolerance in Serpinf1(-/-) mice. Interestingly, overexpression of PEDF in vitro increased mineralization with a concomitant increase in the expression of bone gamma-carboxyglutamate protein, alkaline phosphatase and collagen, type I, alpha I, but the increased serum PEDF level did not improve the bone phenotype of Serpinf1(-/-) mice. These results suggest that PEDF may function in a context-dependent and paracrine fashion in bone homeostasis.


Assuntos
Osso e Ossos/fisiologia , Proteínas do Olho/sangue , Proteínas do Olho/genética , Fígado/metabolismo , Fatores de Crescimento Neural/sangue , Fatores de Crescimento Neural/genética , Osteogênese Imperfeita/fisiopatologia , Osteogênese Imperfeita/terapia , Serpinas/sangue , Serpinas/genética , Ácido 1-Carboxiglutâmico/genética , Adenoviridae/genética , Fosfatase Alcalina/genética , Animais , Densidade Óssea , Colágeno Tipo I/genética , Técnicas de Transferência de Genes , Intolerância à Glucose , Células HEK293 , Homeostase , Humanos , Camundongos , Camundongos Knockout , Mutação , Fatores de Crescimento Neural/deficiência , Fenótipo , Serpinas/deficiência
5.
J Bone Miner Res ; 30(6): 1077-89, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25556649

RESUMO

RECQ DNA helicases play critical roles in maintaining genomic stability, but their role in development has been less well studied. Rothmund-Thomson syndrome, RAPADILINO, and Baller-Gerold syndrome are rare genetic disorders caused by mutations in the RECQL4 gene. These patients have significant skeletal developmental abnormalities including radial ray, limb and craniofacial defects. To investigate the role of Recql4 in the developing skeletal system, we generated Recql4 conditional knockout mice targeting the skeletal lineage. Inactivation of Recql4 using the Prx1-Cre transgene led to limb abnormalities and craniosynostosis mimicking the major bone findings in human RECQL4 patients. These Prx1-Cre(+) ;Recql4(fl/fl) mice as well as Col2a1-Cre(+) ;Recql4(fl/fl) mice exhibited growth plate defects and an increased p53 response in affected tissues. Inactivation of Trp53 in these Recql4 mutants resulted in genetic rescue of the skeletal phenotypes, indicating an in vivo interaction between Recql4 and Trp53, and p53 activation as an underlying mechanism for the developmental bone abnormalities in RECQL4 disorders. Our findings show that RECQL4 is critical for skeletal development by modulating p53 activity in vivo.


Assuntos
Desenvolvimento Ósseo , Mutação , RecQ Helicases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Canal Anal/anormalidades , Canal Anal/metabolismo , Canal Anal/patologia , Animais , Craniossinostoses/genética , Craniossinostoses/metabolismo , Craniossinostoses/patologia , Nanismo/genética , Nanismo/metabolismo , Nanismo/patologia , Comunicação Interatrial/genética , Comunicação Interatrial/metabolismo , Comunicação Interatrial/patologia , Humanos , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/metabolismo , Deformidades Congênitas dos Membros/patologia , Camundongos , Camundongos Transgênicos , Patela/anormalidades , Patela/metabolismo , Patela/patologia , Rádio (Anatomia)/anormalidades , Rádio (Anatomia)/metabolismo , Rádio (Anatomia)/patologia , RecQ Helicases/genética , Síndrome de Rothmund-Thomson/genética , Síndrome de Rothmund-Thomson/metabolismo , Síndrome de Rothmund-Thomson/patologia , Proteína Supressora de Tumor p53/genética
6.
Proc Natl Acad Sci U S A ; 111(23): 8673-8, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24912186

RESUMO

The bone marrow environment is among the most hypoxic in the body, but how hypoxia affects bone formation is not known. Because low oxygen tension stabilizes hypoxia-inducible factor alpha (HIFα) proteins, we have investigated the effect of expressing a stabilized form of HIF1α in osteoblast precursors. Brief stabilization of HIF1α in SP7-positive cells in postnatal mice dramatically stimulated cancellous bone formation via marked expansion of the osteoblast population. Remarkably, concomitant deletion of vascular endothelial growth factor A (VEGFA) in the mouse did not diminish bone accrual caused by HIF1α stabilization. Thus, HIF1α-driven bone formation is independent of VEGFA up-regulation and increased angiogenesis. On the other hand, HIF1α stabilization stimulated glycolysis in bone through up-regulation of key glycolytic enzymes including pyruvate dehydrogenase kinase 1 (PDK1). Pharmacological inhibition of PDK1 completely reversed HIF1α-driven bone formation in vivo. Thus, HIF1α stimulates osteoblast formation through direct activation of glycolysis, and alterations in cellular metabolism may be a broadly applicable mechanism for regulating cell differentiation.


Assuntos
Glicólise/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Osteogênese/fisiologia , Regulação para Cima , Animais , Western Blotting , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Hipóxia Celular , Feminino , Glicólise/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Fator de Transcrição Sp7 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Hum Mol Genet ; 23(15): 4035-42, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24634143

RESUMO

Osteogenesis imperfecta (OI) is a heritable disorder of connective tissue characterized by bone fragility and low bone mass. Recently, our group and others reported that WNT1 recessive mutations cause OI, whereas WNT1 heterozygous mutations cause early onset osteoporosis. These findings support the hypothesis that WNT1 is an important WNT ligand regulating bone formation and bone homeostasis. While these studies provided strong human genetic and in vitro functional data, an in vivo animal model to study the mechanism of WNT1 function in bone is lacking. Here, we show that Swaying (Wnt1(sw/sw)) mice previously reported to carry a spontaneous mutation in Wnt1 share major features of OI including propensity to fractures and severe osteopenia. In addition, biomechanical and biochemical analyses showed that Wnt1(sw/sw) mice exhibit reduced bone strength with altered levels of mineral and collagen in the bone matrix that is also distinct from the type I collagen-related form of OI. Further histomorphometric analyses and gene expression studies demonstrate that the bone phenotype is associated with defects in osteoblast activity and function. Our study thus provides in vivo evidence that WNT1 mutations contribute to bone fragility in OI patients and demonstrates that the Wnt1(sw/sw) mouse is a murine model of OI caused by WNT1 mutations.


Assuntos
Osso e Ossos/metabolismo , Fraturas Ósseas/genética , Mutação , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese Imperfeita/genética , Proteína Wnt1/genética , Animais , Densidade Óssea/genética , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/metabolismo , Doenças Ósseas Metabólicas/patologia , Osso e Ossos/patologia , Modelos Animais de Doenças , Feminino , Fraturas Ósseas/metabolismo , Fraturas Ósseas/patologia , Expressão Gênica , Heterozigoto , Homozigoto , Humanos , Masculino , Camundongos , Osteoblastos/patologia , Osteoclastos/patologia , Osteogênese Imperfeita/metabolismo , Osteogênese Imperfeita/patologia , Fenótipo , Proteína Wnt1/metabolismo
8.
PLoS Genet ; 10(1): e1004145, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24497849

RESUMO

WNT signaling has been implicated in both embryonic and postnatal bone formation. However, the pertinent WNT ligands and their downstream signaling mechanisms are not well understood. To investigate the osteogenic capacity of WNT7B and WNT5A, both normally expressed in the developing bone, we engineered mouse strains to express either protein in a Cre-dependent manner. Targeted induction of WNT7B, but not WNT5A, in the osteoblast lineage dramatically enhanced bone mass due to increased osteoblast number and activity; this phenotype began in the late-stage embryo and intensified postnatally. Similarly, postnatal induction of WNT7B in Runx2-lineage cells greatly stimulated bone formation. WNT7B activated mTORC1 through PI3K-AKT signaling. Genetic disruption of mTORC1 signaling by deleting Raptor in the osteoblast lineage alleviated the WNT7B-induced high-bone-mass phenotype. Thus, WNT7B promotes bone formation in part through mTORC1 activation.


Assuntos
Complexos Multiproteicos/genética , Osteogênese/genética , Proteínas Proto-Oncogênicas/genética , Serina-Treonina Quinases TOR/genética , Proteínas Wnt/genética , Animais , Diferenciação Celular , Linhagem da Célula , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/biossíntese , Osteoblastos/citologia , Proteínas Proto-Oncogênicas/biossíntese , Serina-Treonina Quinases TOR/biossíntese , Proteínas Wnt/biossíntese , Via de Sinalização Wnt , Proteína Wnt-5a
9.
N Engl J Med ; 368(19): 1809-16, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23656646

RESUMO

This report identifies human skeletal diseases associated with mutations in WNT1. In 10 family members with dominantly inherited, early-onset osteoporosis, we identified a heterozygous missense mutation in WNT1, c.652T→G (p.Cys218Gly). In a separate family with 2 siblings affected by recessive osteogenesis imperfecta, we identified a homozygous nonsense mutation, c.884C→A, p.Ser295*. In vitro, aberrant forms of the WNT1 protein showed impaired capacity to induce canonical WNT signaling, their target genes, and mineralization. In mice, Wnt1 was clearly expressed in bone marrow, especially in B-cell lineage and hematopoietic progenitors; lineage tracing identified the expression of the gene in a subset of osteocytes, suggesting the presence of altered cross-talk in WNT signaling between the hematopoietic and osteoblastic lineage cells in these diseases.


Assuntos
Mutação , Osteogênese Imperfeita/genética , Osteoporose/genética , Proteína Wnt1/genética , Adolescente , Adulto , Idade de Início , Idoso , Animais , Criança , Feminino , Genes Dominantes , Genes Recessivos , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Linhagem , Proteína Wnt1/metabolismo , Adulto Jovem
10.
Cancer Res ; 72(4): 897-907, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22186138

RESUMO

Hedgehog (Hh) signaling is implicated in bone development and cellular transformation. Here we show that inhibition of Hh pathway activity inhibits tumor growth through effects on the microenvironment. Pharmacologic inhibition of the Hh effector Smoothened (Smo) increased trabecular bone in vivo and inhibited osteoclastogenesis in vitro. In addition, enhanced Hh signaling due to heterozygosity of the Hh inhibitory receptor Patched (Ptch1(+/-)) increased bone resorption, suggesting direct regulation of osteoclast (OC) activity by the Hh pathway. Ptch1(+/-) mice had increased bone metastatic and subcutaneous tumor growth, suggesting that increased Hh activation in host cells promoted tumor growth. Subcutaneous growth of Hh-resistant tumor cells was inhibited by LDE225, a novel orally bioavailable SMO antagonist, consistent with effects on tumor microenvironment. Knockdown of the Hh ligand Sonic Hh (SHH) in these cells decreased subcutaneous tumor growth and decreased stromal cell production of interleukin-6, indicating that tumor-derived Hh ligands stimulated tumor growth in a paracrine fashion. Together our findings show that inhibition of the Hh pathway can reduce tumor burden, regardless of tumor Hh responsiveness, through effects on tumor cells, OCs, and stromal cells within the tumor microenvironment. Hh may be a promising therapeutic target for solid cancers and bone metastases.


Assuntos
Neoplasias Ósseas/prevenção & controle , Osso e Ossos/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Neoplasias Experimentais/metabolismo , Microambiente Tumoral , Alcaloides de Veratrum/farmacologia , Animais , Neoplasias Ósseas/secundário , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Proteínas Hedgehog/antagonistas & inibidores , Heterozigoto , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/patologia , Osteoclastos/efeitos dos fármacos , Receptores Patched , Receptor Patched-1 , Receptores de Superfície Celular/genética , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Transdução de Sinais , Receptor Smoothened
11.
Dev Biol ; 362(1): 76-82, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22155527

RESUMO

Indian hedgehog (Ihh) is indispensable for osteoblast differentiation during embryonic development of the endochondral skeleton. In the absence of Ihh, cells of the osteoblast lineage fail to activate the expression of Runx2, a transcription factor integral to osteoblast differentiation. However, it is hitherto unclear whether the lack of Runx2 expression is solely responsible for the failure of osteoblast formation in Ihh-null embryos. Here, by creating a mouse allele that expresses Runx2 in a Cre-dependent manner, we show that force-expression of Runx2 in the skeletogenic cells restores bone formation in the Runx2-null, but not in the Ihh-null embryo. Thus, the mechanism through which Ihh induces osteoblast differentiation requires other effectors in addition to Runx2.


Assuntos
Diferenciação Celular/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Desenvolvimento Embrionário/fisiologia , Proteínas Hedgehog/metabolismo , Osteoblastos/fisiologia , Osteogênese/fisiologia , Animais , Condrócitos/metabolismo , Condrócitos/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Técnicas Histológicas , Hibridização In Situ , Camundongos
12.
Development ; 136(24): 4177-85, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19906844

RESUMO

Indian hedgehog (Ihh) critically regulates multiple aspects of endochondral bone development. Although it is generally believed that all Ihh functions are mediated by the Gli family of transcription activators and repressors, formal genetic proof for this notion has not been provided. Moreover, the extent to which different Gli proteins contribute to Ihh functions is not fully understood. Previous work has shown that de-repression of the Gli3 repressor is the predominant mode through which Ihh controls chondrocyte proliferation and maturation, but that osteoblast differentiation and hypertrophic cartilage vascularization require additional mechanisms. To test the involvement of Gli2 activation in these processes, we have generated a mouse strain that expresses a constitutive Gli2 activator in a Cre-dependent manner, and have attempted to rescue the Ihh-null mouse with the Gli2 activator, either alone or in combination with Gli3 removal. Here, we report that the Gli2 activator alone is sufficient to induce vascularization of the hypertrophic cartilage in the absence of Ihh but requires simultaneous removal of Gli3 to restore osteoblast differentiation. These results therefore provide direct genetic evidence that Gli2 and Gli3 collectively mediate all major aspects of Ihh function during endochondral skeletal development.


Assuntos
Cartilagem/irrigação sanguínea , Proteínas Hedgehog/fisiologia , Fatores de Transcrição Kruppel-Like/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Osteoblastos/fisiologia , Osteogênese/fisiologia , Animais , Cartilagem/embriologia , Diferenciação Celular , Proliferação de Células , Condrócitos/citologia , Condrócitos/fisiologia , Camundongos , Camundongos Knockout , Neovascularização Patológica/genética , Neovascularização Fisiológica/genética , Osteoblastos/citologia , Transdução de Sinais , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco
13.
Dev Cell ; 12(1): 113-27, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17199045

RESUMO

Wnt signaling regulates a variety of developmental processes in animals. Although the beta-catenin-dependent (canonical) pathway is known to control cell fate, a similar role for noncanonical Wnt signaling has not been established in mammals. Moreover, the intracellular cascades for noncanonical Wnt signaling remain to be elucidated. Here, we delineate a pathway in which Wnt3a signals through the Galpha(q/11) subunits of G proteins to activate phosphatidylinositol signaling and PKCdelta in the murine ST2 cells. Galpha(q/11)-PKCdelta signaling is required for Wnt3a-induced osteoblastogenesis in these cells, and PKCdelta homozygous mutant mice exhibit a deficit in embryonic bone formation. Furthermore, Wnt7b, expressed by osteogenic cells in vivo, induces osteoblast differentiation in vitro via the PKCdelta-mediated pathway; ablation of Wnt7b in skeletal progenitors results in less bone in the mouse embryo. Together, these results reveal a Wnt-dependent osteogenic mechanism, and they provide a potential target pathway for designing therapeutics to promote bone formation.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Glicoproteínas/metabolismo , Osteogênese/fisiologia , Proteína Quinase C-delta/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Osso e Ossos/anormalidades , Osso e Ossos/embriologia , Diferenciação Celular , Meios de Cultivo Condicionados , Proteínas Desgrenhadas , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/citologia , Ativação Enzimática , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Glicoproteínas/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Substrato Quinase C Rico em Alanina Miristoilada , Osteoblastos/citologia , Fosfatidilinositóis/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas/deficiência , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Wnt/deficiência , Proteínas Wnt/genética , Proteína Wnt3 , Proteína Wnt3A , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA