Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3312, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286550

RESUMO

Mutations in thyroid hormone receptor α1 (TRα1) cause Resistance to Thyroid Hormone α (RTHα), a disorder characterized by hypothyroidism in TRα1-expressing tissues including the heart. Surprisingly, we report that treatment of RTHα patients with thyroxine to overcome tissue hormone resistance does not elevate their heart rate. Cardiac telemetry in male, TRα1 mutant, mice indicates that such persistent bradycardia is caused by an intrinsic cardiac defect and not due to altered autonomic control. Transcriptomic analyses show preserved, thyroid hormone (T3)-dependent upregulation of pacemaker channels (Hcn2, Hcn4), but irreversibly reduced expression of several ion channel genes controlling heart rate. Exposure of TRα1 mutant male mice to higher maternal T3 concentrations in utero, restores altered expression and DNA methylation of ion channels, including Ryr2. Our findings indicate that target genes other than Hcn2 and Hcn4 mediate T3-induced tachycardia and suggest that treatment of RTHα patients with thyroxine in high dosage without concomitant tachycardia, is possible.


Assuntos
Síndrome da Resistência aos Hormônios Tireóideos , Tiroxina , Masculino , Animais , Camundongos , Tiroxina/uso terapêutico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Síndrome da Resistência aos Hormônios Tireóideos/genética , Hormônios Tireóideos , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Mutação , Taquicardia/genética
2.
Thyroid ; 30(6): 908-923, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32183611

RESUMO

Background: Pathological conditions of the thyroid hormone (TH) system are routinely diagnosed by using serum concentrations of thyrotropin (TSH), which is sufficient in most cases. However, in certain conditions, such as resistance to TH due to mutations in THRB (RTHb) or TSH-releasing pituitary adenoma (TSHoma), TSH may be insufficient for a correct diagnosis, even in combination with serum TH concentrations. Likewise, under TH replacement therapy, these parameters can be misleading and do not always allow optimal treatment. Hence, additional biomarkers to assess challenging clinical conditions would be highly beneficial. Methods: Data from untargeted multi-omics analyses of plasma samples from experimental thyrotoxicosis in human and mouse were exploited to identify proteins that might represent possible biomarkers of TH function. Subsequent mouse studies were used to identify the tissue of origin and the involvement of the two different TH receptors (TR). For in-depth characterization of the underlying cellular mechanisms, primary mouse cells were used. Results: The analysis of the plasma proteome data sets revealed 16 plasma proteins that were concordantly differentially abundant under thyroxine treatment compared with euthyroid controls across the two species. These originated predominantly from liver, spleen, and bone. Independent studies in a clinical cohort and different mouse models identified CD5L as the most robust putative biomarker under different serum TH states and treatment periods. In vitro studies revealed that CD5L originates from proinflammatory M1 macrophages, which are similar to liver-residing Kupffer cells, and is regulated by an indirect mechanism requiring the secretion of a yet unknown factor from hepatocytes. In agreement with the role of TRα1 in immune cells and the TRß-dependent hepatocyte-derived signaling, the in vivo regulation of Cd5l expression depended on both TR isoforms. Conclusion: Our results identify several novel targets of TH action in serum, with CD5L as the most robust marker. Although further studies will be needed to validate the specificity of these targets, CD5L seems to be a promising candidate to assess TH action in hepatocyte-macrophage crosstalk.


Assuntos
Proteínas Reguladoras de Apoptose/sangue , Fígado/metabolismo , Receptores Depuradores/sangue , Glândula Tireoide/metabolismo , Receptores beta dos Hormônios Tireóideos/metabolismo , Animais , Biomarcadores/sangue , Macrófagos/metabolismo , Camundongos , Proteômica , Doenças da Glândula Tireoide/genética , Doenças da Glândula Tireoide/metabolismo , Testes de Função Tireóidea , Receptores beta dos Hormônios Tireóideos/genética , Hormônios Tireóideos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA