Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Neuropathol Exp Neurol ; 79(6): 626-640, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32417932

RESUMO

Choroid plexus (CP) may aid brain development and repair by secreting growth factors and neurotrophins for CSF streaming to ventricular and subventricular zones. Disrupted ventricular/subventricular zone progenitors and stem cells lead to CNS maldevelopment. Exploring models, we organ cultured the CP and transplanted fresh CP into a lateral ventricle of postnatal hydrocephalic (hyHTx) and nonhydrocephalic (nHTx) rats. After 60 days in vitro, the cultured choroid ependyma formed spherical rings with beating cilia. Cultured CP expressed endocytotic caveolin 1 and apical aquaporin 1 and absorbed horseradish peroxidase from medium. Transthyretin secretory protein was secreted by organ-cultured CP into medium throughout 60 days in vitro. Fresh CP, surviving at 1 week after lateral ventricle implantation of nHTx or hyHTx did not block CSF flow. Avascular 1-week transplants in vivo expressed caveolin 1, aquaporin 1, and transthyretin, indicating that grafted CP may secrete trophic proteins but not CSF. Our findings encourage further exploration on CP organ culture and grafting for translational strategies. Because transplanted CP, though not producing CSF, may secrete beneficial molecules for developing brain injured by hydrocephalus, we propose that upon CP removal in hydrocephalus surgery, the fractionated tissue could be transplanted back (ventricular autograft).


Assuntos
Plexo Corióideo , Hidrocefalia/cirurgia , Ventrículos Laterais/cirurgia , Enxerto Vascular/métodos , Animais , Modelos Animais de Doenças , Técnicas de Cultura de Órgãos , Ratos , Resultado do Tratamento
2.
Cell Tissue Res ; 381(1): 141-161, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32065263

RESUMO

Foetal onset hydrocephalus is a disease starting early in embryonic life; in many cases it results from a cell junction pathology of neural stem (NSC) and neural progenitor (NPC) cells forming the ventricular zone (VZ) and sub-ventricular zone (SVZ) of the developing brain. This pathology results in disassembling of VZ and loss of NSC/NPC, a phenomenon known as VZ disruption. At the cerebral aqueduct, VZ disruption triggers hydrocephalus while in the telencephalon, it results in abnormal neurogenesis. This may explain why derivative surgery does not cure hydrocephalus. NSC grafting appears as a therapeutic opportunity. The present investigation was designed to find out whether this is a likely possibility. HTx rats develop hereditary hydrocephalus; 30-40% of newborns are hydrocephalic (hyHTx) while their littermates are not (nHTx). NSC/NPC from the VZ/SVZ of nHTx rats were cultured into neurospheres that were then grafted into a lateral ventricle of 1-, 2- or 7-day-old hyHTx. Once in the cerebrospinal fluid, neurospheres disassembled and the freed NSC homed at the areas of VZ disruption. A population of homed cells generated new multiciliated ependyma at the sites where the ependyma was missing due to the inherited pathology. Another population of NSC homed at the disrupted VZ differentiated into ßIII-tubulin+ spherical cells likely corresponding to neuroblasts that progressed into the parenchyma. The final fate of these cells could not be established due to the protocol used to label the grafted cells. The functional outcomes of NSC grafting in hydrocephalus remain open. The present study establishes an experimental paradigm of NSC/NPC therapy of foetal onset hydrocephalus, at the etiologic level that needs to be further explored with more analytical methodologies.


Assuntos
Hidrocefalia/terapia , Células-Tronco Neurais/transplante , Animais , Diferenciação Celular , Proliferação de Células , Neurogênese , Ratos
3.
Fluids Barriers CNS ; 15(1): 34, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30541599

RESUMO

BACKGROUND: The roles of the choroid plexus (CP) and cerebrospinal fluid (CSF) production have drawn increasing attention in Alzheimer's disease (AD) research. Specifically, studies document markedly decreased CSF production and turnover in moderate-to-severe AD. Moreover, reduced CP function and CSF turnover lead to impaired clearance of toxic metabolites, likely promote neuroinflammation, and may facilitate neuronal death during AD progression. We analyzed CP gene expression in AD compared with control subjects, specifically considering those genes involved with CSF production and CP structural integrity. METHODS: The Brown-Merck Gene Expression Omnibus (GEO) database (CP transcripts) was mined to examine changes in gene expression in AD compared to controls with a focus on assorted genes thought to play a role in CSF production. Specifically, genes coding for ion transporters in CP epithelium (CPE) and associated enzymes like Na-K-ATPase and carbonic anhydrase, aquaporins, mitochondrial transporters/enzymes, blood-cerebrospinal fluid barrier (BCSFB) stability proteins, and pro-inflammatory mediators were selected for investigation. Data were analyzed using t test p-value and fold-change analysis conducted by the GEO2R feature of the GEO database. RESULTS: Significant expression changes for several genes were observed in AD CP. These included disruptions to ion transporters (e.g., the solute carrier gene SLC4A5, p = 0.004) and associated enzyme expressions (e.g., carbonic anhydrase CA4, p = 0.0001), along with decreased expression of genes involved in BCSFB integrity (e.g., claudin CLDN5, p = 0.039) and mitochondrial ATP synthesis (e.g., adenosine triphosphate ATP5L, p = 0.0004). Together all changes point to disrupted solute transport at the blood-CSF interface in AD. Increased expression of pro-inflammatory (e.g., interleukin IL1RL1, p = 0.00001) and potential neurodegenerative genes (e.g., amyloid precursor APBA3, p = 0.002) also implicate disturbed CP function. CONCLUSIONS: Because the altered expression of numerous transcripts in AD-CP help explain decreased CSF production in AD, these findings represent a first step towards identifying novel therapeutic targets in AD.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/genética , Encéfalo/metabolismo , Plexo Corióideo/metabolismo , Doença de Alzheimer/metabolismo , Barreira Hematoencefálica/metabolismo , Bases de Dados Factuais , Expressão Gênica , Perfilação da Expressão Gênica , Homeostase , Humanos , Transporte de Íons
4.
Front Aging Neurosci ; 10: 245, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186149

RESUMO

Background: The pathophysiology underlying altered blood-cerebrospinal fluid barrier (BCSFB) function in Alzheimer's disease (AD) is unknown but may relate to endothelial cell activation and cytokine mediated inflammation. Methods: Cerebrospinal fluid (CSF) and peripheral blood were concurrently collected from cognitively healthy controls (N = 21) and patients with mild cognitive impairment (MCI) (N = 8) or AD (N = 11). The paired serum and CSF samples were assayed for a panel of cytokines, chemokines, and related trophic factors using multiplex ELISAs. Dominance analysis models were conducted to determine the relative importance of the inflammatory factors in relationship to BCSFB permeability, as measured by CSF/serum ratios for urea, creatinine, and albumin. Results: BCSFB disruption to urea, a small molecule distributed by passive diffusion, had a full model coefficient of determination (r2) = 0.35, and large standardized dominance weights (>0.1) for monocyte chemoattractant protein-1, interleukin (IL)-15, IL-1rα, and IL-2 in serum. BCSFB disruption to creatinine, a larger molecule governed by active transport, had a full model r2 = 0.78, and large standardized dominance weights for monocyte inhibitor protein-1b in CSF and tumor necrosis factor-α in serum. BCSFB disruption to albumin, a much larger molecule, had a full model r2 = 0.62, and large standardized dominance weights for IL-17a, interferon-gamma, IL-2, and VEGF in CSF, as well IL-4 in serum. Conclusions: Inflammatory proteins have been widely documented in the AD brain. The results of the current study suggest that changes in BCSFB function resulting in altered permeability and transport are related to expression of specific inflammatory proteins, and that the shifting distribution of these proteins from serum to CSF in AD and MCI is correlated with more severe perturbations in BCSFB function.

5.
EMBO Mol Med ; 10(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29472246

RESUMO

Alzheimer's disease (AD) is the most common form of dementia, and neuroinflammation is an important hallmark of the pathogenesis. Tumor necrosis factor (TNF) might be detrimental in AD, though the results coming from clinical trials on anti-TNF inhibitors are inconclusive. TNFR1, one of the TNF signaling receptors, contributes to the pathogenesis of AD by mediating neuronal cell death. The blood-cerebrospinal fluid (CSF) barrier consists of a monolayer of choroid plexus epithelial (CPE) cells, and AD is associated with changes in CPE cell morphology. Here, we report that TNF is the main inflammatory upstream mediator in choroid plexus tissue in AD patients. This was confirmed in two murine AD models: transgenic APP/PS1 mice and intracerebroventricular (icv) AßO injection. TNFR1 contributes to the morphological damage of CPE cells in AD, and TNFR1 abrogation reduces brain inflammation and prevents blood-CSF barrier impairment. In APP/PS1 transgenic mice, TNFR1 deficiency ameliorated amyloidosis. Ultimately, genetic and pharmacological blockage of TNFR1 rescued from the induced cognitive impairments. Our data indicate that TNFR1 is a promising therapeutic target for AD treatment.


Assuntos
Doença de Alzheimer/metabolismo , Plexo Corióideo/citologia , Plexo Corióideo/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Doença de Alzheimer/genética , Animais , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase em Tempo Real , Receptores Tipo I de Fatores de Necrose Tumoral/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-27990492

RESUMO

Expression of the orphan C2orf40 gene is associated with the aggregation of the neurofibrillary tangle-protein tau in transgenic mice, tumor suppression, the induction of senescence in CNS, and the activation of microglia and peripheral mononuclear leukocytes. This gene also encodes several secreted pro- and anti-inflammatory neuropeptide-like cytokines, suggesting they might be implicated in the inflammatory component(s) of Alzheimer's disease (AD). Accordingly, we evaluated human AD and control brains for expression changes by RT-qPCR, Western blot, and histological changes by immunolabeling. RT-qPCR demonstrated increased cortical gene expression in AD. The molecular form of Ecrg4 detected in cortex was 8-10 kDa, which was shown previously to interact with the innate immunity receptor complex. Immunocytochemical studies showed intensely stained microglia and intravascular blood-borne monocytes within cerebral cortical white matter of AD patients. Staining was diminished within cortical neurons, except for prominent staining in neurofibrillary tangles. Choroid plexuses showed a decreasing trend. These findings support our hypothesis that c2orf40 participates in the neuroimmune response in AD.

7.
J Neuropathol Exp Neurol ; 74(7): 653-71, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26079447

RESUMO

Fetal-onset hydrocephalus affects 1 to 3 per 1,000 live births. It is not only a disorder of cerebrospinal fluid dynamics but also a brain disorder that corrective surgery does not ameliorate. We hypothesized that cell junction abnormalities of neural stem cells (NSCs) lead to the inseparable phenomena of fetal-onset hydrocephalus and abnormal neurogenesis. We used bromodeoxyuridine labeling, immunocytochemistry, electron microscopy, and cell culture to study the telencephalon of hydrocephalic HTx rats and correlated our findings with those in human hydrocephalic and nonhydrocephalic human fetal brains (n = 12 each). Our results suggest that abnormal expression of the intercellular junction proteins N-cadherin and connexin-43 in NSC leads to 1) disruption of the ventricular and subventricular zones, loss of NSCs and neural progenitor cells; and 2) abnormalities in neurogenesis such as periventricular heterotopias and abnormal neuroblast migration. In HTx rats, the disrupted NSC and progenitor cells are shed into the cerebrospinal fluid and can be grown into neurospheres that display intercellular junction abnormalities similar to those of NSC of the disrupted ventricular zone; nevertheless, they maintain their potential for differentiating into neurons and glia. These NSCs can be used to investigate cellular and molecular mechanisms underlying this condition, thereby opening the avenue for stem cell therapy.


Assuntos
Hidrocefalia/patologia , Junções Intercelulares/patologia , Células-Tronco Neurais/patologia , Neurogênese/fisiologia , Obstrução do Fluxo Ventricular Externo/patologia , Fatores Etários , Animais , Animais Recém-Nascidos , Diferenciação Celular , Movimento Celular , Células Cultivadas , Embrião de Mamíferos , Feminino , Feto , Idade Gestacional , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Junções Intercelulares/ultraestrutura , Masculino , Microscopia Eletrônica , Células-Tronco Neurais/ultraestrutura , Ratos , Telencéfalo/embriologia , Telencéfalo/crescimento & desenvolvimento , Telencéfalo/patologia , Telencéfalo/ultraestrutura
8.
Int J Dev Neurosci ; 31(5): 319-27, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23680292

RESUMO

The human choroid plexuses in the ventricular system represent the main source of cerebrospinal fluid secretion and constitute a major barrier interface that controls the brain's environment. The present study focused on the choroid plexus of the fourth ventricle, the main cavity of the brainstem containing important nuclei and/or structures mediating autonomic vital functions. In serial sections of 84 brainstems of subjects aged from 17 gestational weeks to 8 postnatal months of life, the deaths due to both known and unknown causes, we examined the cytoarchitecture and the developmental steps of the fourth ventricle choroid plexus to determine whether this structure shows morphological and/or functional alterations in unexplained perinatal deaths (Sudden Infant Death Syndrome and Sudden Intrauterine Unexplained Death Syndrome). High incidence of histological and immunohistochemical alterations (prevalence of epithelial dark cells, the presence of cystic cells in the stroma, decreased number of blood capillaries, hyperexpression of Substance P and apoptosis) were prevalently observed in unexplained death victims (p<0.05 vs. controls). A significant correlation was found between maternal smoking in pregnancy and choroidal neuropathological parameters (p<0.01). This work underscores the negative effects of prenatal exposure to nicotine on the development of the autonomic nervous system, and in particular of the fourth ventricle choroid plexus that is a very vulnerable structure in the developing CSF-brain system.


Assuntos
Síndrome de Brugada/mortalidade , Síndrome de Brugada/patologia , Plexo Corióideo/patologia , Efeitos Tardios da Exposição Pré-Natal/mortalidade , Efeitos Tardios da Exposição Pré-Natal/patologia , Fumar/mortalidade , Fumar/patologia , Causalidade , Comorbidade , Feminino , Quarto Ventrículo/patologia , Humanos , Incidência , Itália/epidemiologia , Gravidez , Fatores de Risco , Taxa de Sobrevida
9.
PLoS One ; 6(9): e24609, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21935431

RESUMO

By virtue of its ability to regulate the composition of cerebrospinal fluid (CSF), the choroid plexus (CP) is ideally suited to instigate a rapid response to traumatic brain injury (TBI) by producing growth regulatory proteins. For example, Esophageal Cancer Related Gene-4 (Ecrg4) is a tumor suppressor gene that encodes a hormone-like peptide called augurin that is present in large concentrations in CP epithelia (CPe). Because augurin is thought to regulate senescence, neuroprogenitor cell growth and differentiation in the CNS, we evaluated the kinetics of Ecrg4 expression and augurin immunoreactivity in CPe after CNS injury. Adult rats were injured with a penetrating cortical lesion and alterations in augurin immunoreactivity were examined by immunohistochemistry. Ecrg4 gene expression was characterized by in situ hybridization. Cell surface augurin was identified histologically by confocal microscopy and biochemically by sub-cellular fractionation. Both Ecrg4 gene expression and augurin protein levels were decreased 24-72 hrs post-injury but restored to uninjured levels by day 7 post-injury. Protein staining in the supraoptic nucleus of the hypothalamus, used as a control brain region, did not show a decrease of auguin immunoreactivity. Ecrg4 gene expression localized to CPe cells, and augurin protein to the CPe ventricular face. Extracellular cell surface tethering of 14 kDa augurin was confirmed by cell surface fractionation of primary human CPe cells in vitro while a 6-8 kDa fragment of augurin was detected in conditioned media, indicating release from the cell surface by proteolytic processing. In rat CSF however, 14 kDa augurin was detected. We hypothesize the initial release and proteolytic processing of augurin participates in the activation phase of injury while sustained Ecrg4 down-regulation is dysinhibitory during the proliferative phase. Accordingly, augurin would play a constitutive inhibitory function in normal CNS while down regulation of Ecrg4 gene expression in injury, like in cancer, dysinhibits proliferation.


Assuntos
Lesões Encefálicas/metabolismo , Plexo Corióideo/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Lesões Encefálicas/genética , Células Cultivadas , Imunofluorescência , Humanos , Imuno-Histoquímica , Hibridização In Situ , Masculino , Microscopia Confocal , Proteínas de Neoplasias/genética , Ratos , Ratos Sprague-Dawley , Proteínas Supressoras de Tumor
10.
Fluids Barriers CNS ; 8(1): 6, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21349154

RESUMO

BACKGROUND: The content and composition of cerebrospinal fluid (CSF) is determined in large part by the choroid plexus (CP) and specifically, a specialized epithelial cell (CPe) layer that responds to, synthesizes, and transports peptide hormones into and out of CSF. Together with ventricular ependymal cells, these CPe relay homeostatic signals throughout the central nervous system (CNS) and regulate CSF hydrodynamics. One new candidate signal is augurin, a newly recognized 14 kDa protein that is encoded by esophageal cancer related gene-4 (Ecrg4), a putative tumor suppressor gene whose presence and function in normal tissues remains unexplored and enigmatic. The aim of this study was to explore whether Ecrg4 and its product augurin, can be implicated in CNS development and the response to CNS injury. METHODS: Ecrg4 gene expression in CNS and peripheral tissues was studied by in situ hybridization and quantitative RT-PCR. Augurin, the protein encoded by Ecrg4, was detected by immunoblotting, immunohistochemistry and ELISA. The biological consequence of augurin over-expression was studied in a cortical stab model of rat CNS injury by intra-cerebro-ventricular injection of an adenovirus vector containing the Ecrg4 cDNA. The biological consequences of reduced augurin expression were evaluated by characterizing the CNS phenotype caused by Ecrg4 gene knockdown in developing zebrafish embryos. RESULTS: Gene expression and immunohistochemical analyses revealed that, the CP is a major source of Ecrg4 in the CNS and that Ecrg4 mRNA is predominantly localized to choroid plexus epithelial (CPe), ventricular and central canal cells of the spinal cord. After a stab injury into the brain however, both augurin staining and Ecrg4 gene expression decreased precipitously. If the loss of augurin was circumvented by over-expressing Ecrg4 in vivo, BrdU incorporation by cells in the subependymal zone decreased. Inversely, gene knockdown of Ecrg4 in developing zebrafish embryos caused increased proliferation of GFAP-positive cells and induced a dose-dependent hydrocephalus-like phenotype that could be rescued by co-injection of antisense morpholinos with Ecrg4 mRNA. CONCLUSION: An unusually elevated expression of the Ecrg4 gene in the CP implies that its product, augurin, plays a role in CP-CSF-CNS function. The results are all consistent with a model whereby an injury-induced decrease in augurin dysinhibits target cells at the ependymal-subependymal interface. We speculate that the ability of CP and ependymal epithelium to alter the progenitor cell response to CNS injury may be mediated, in part by Ecrg4. If so, the canonic control of its promoter by DNA methylation may implicate epigenetic mechanisms in neuroprogenitor fate and function in the CNS.

11.
BMC Neurosci ; 12: 4, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21214926

RESUMO

BACKGROUND: Because the choroid plexus (CP) is uniquely suited to control the composition of cerebrospinal fluid (CSF), there may be therapeutic benefits to increasing the levels of biologically active proteins in CSF to modulate central nervous system (CNS) functions. To this end, we sought to identify peptides capable of ligand-mediated targeting to CP epithelial cells reasoning that they could be exploited to deliver drugs, biotherapeutics and genes to the CNS. METHODS: A peptide library displayed on M13 bacteriophage was screened for ligands capable of internalizing into CP epithelial cells by incubating phage with CP explants for 2 hours at 37C and recovering particles with targeting capacity. RESULTS: Three peptides, identified after four rounds of screening, were analyzed for specific and dose dependent binding and internalization. Binding was deemed specific because internalization was prevented by co-incubation with cognate synthetic peptides. Furthermore, after i.c.v. injection into rat brains, each peptide was found to target phage to epithelial cells in CP and to ependyma lining the ventricles. CONCLUSION: These data demonstrate that ligand-mediated targeting can be used as a strategy for drug delivery to the central nervous system and opens the possibility of using the choroid plexus as a portal of entry into the brain.


Assuntos
Ventrículos Cerebrais/metabolismo , Plexo Corióideo/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Epêndima/metabolismo , Células Epiteliais/metabolismo , Biblioteca de Peptídeos , Animais , Células Cultivadas , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Ventrículos Cerebrais/efeitos dos fármacos , Plexo Corióideo/efeitos dos fármacos , Epêndima/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Feminino , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Peptídeos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Ratos Wistar
12.
Methods Mol Biol ; 686: 483-98, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21082389

RESUMO

Drug delivery to the central nervous system requires the use of specific portals to enable drug entry into the brain and, as such, there is a growing need to identify processes that can enable drug transfer across both blood-brain and blood-cerebrospinal fluid barriers. Phage display is a powerful combinatorial technique that identifies specific peptides that can confer new activities to inactive particles. Identification of these peptides is directly dependent on the specific screening strategies used for their selection and retrieval. This chapter describes three selection strategies, which can be used to identify peptides that target the choroid plexus (CP) directly or for drug translocation across the CP and into cerebrospinal fluid.


Assuntos
Encéfalo/efeitos dos fármacos , Líquido Cefalorraquidiano/efeitos dos fármacos , Plexo Corióideo/efeitos dos fármacos , Biblioteca de Peptídeos , Peptídeos/farmacologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/fisiologia , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Plexo Corióideo/metabolismo , Sistemas de Liberação de Medicamentos , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/química
13.
Semin Oncol ; 36(4 Suppl 2): S46-54, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19660683

RESUMO

Secondary involvement of the leptomeninges represents an infrequent but devastating (and nearly always fatal) complication of solid tumors, hematologic malignancies (both leukemia and lymphoma), and primary brain tumors. Clinical suspicion of neoplastic meningitis (NM) may be raised by the appearance of multivariate neurological symptoms; however, a definitive diagnosis is often difficult to obtain. Improved treatments for primary malignancies and advances in diagnostic imaging technology have led to an apparent increase in the number of patients diagnosed with NM. Unfortunately, therapeutic options remain limited, particularly for patients with chemoresistant tumors. Optimized treatment remains controversial and may rely upon a combination of chemotherapy (intrathecal and/or intravenous) and concurrent focal radiotherapy. This review discusses the advantages and disadvantages of intra-cerebrospinal fluid (CSF) versus systemic strategies for treating NM. Clinical trial evidence is presented for the different treatment modalities. In addition, the therapeutic potential of intra-CSF therapy for cancer prophylaxis is discussed. Earlier diagnosis and more aggressive preventive treatment regimens may provide substantial increases in survival and favorably affect quality of life. Additional data from large-scale, well-controlled trials are required to more accurately assess the efficacy of intra-CSF versus systemic treatment in NM. Future treatment options using novel targets for intra-CSF therapy will be addressed as well.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Carcinomatose Meníngea/tratamento farmacológico , Carcinomatose Meníngea/secundário , Plexo Corióideo/fisiologia , Humanos , Injeções Espinhais/métodos
14.
Pharm Res ; 24(5): 859-67, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17372683

RESUMO

Detection of DNA synthesis in brain employing ((3)H)thymidine (((3)H)dT) or bromo deoxyuridine (BrdU) is widely used as a measure of the "birth" of cells in brain development, adult neurogenesis and neuronal stem cell replacement strategies. However, recent studies have raised serious questions about whether this methodology adequately measures the "birth" of cells in brain either quantitatively or in an interpretable way in comparative studies, or in stem cell investigations. To place these questions in perspective, we review deoxynucleoside synthesis and pharmacokinetics focusing on the barriers interfacing the blood-brain (cerebral capillaries) and blood-cerebrospinal fluid (choroid plexus), and the mechanisms, molecular biology and location of the deoxynucleoside transport systems in the central nervous system. Brain interstitial fluid and CSF nucleoside homeostasis depend upon the activity of concentrative nucleoside transporters (CNT) on the 'central side' of the barrier cells and equilibrative nucleoside transporters (ENT) on their 'plasma side.' With this information about nucleoside transporters, blood/CSF concentrations and metabolic pathways, we discuss the assumptions and weaknesses of using ((3)H)dT or BrdU methodologies alone for studying DNA synthesis in brain in the context of neurogenesis and potential stem cell therapy. We conclude that the use of ((3)H)dT and/or BrdU methodologies can be useful if their limitations are recognized and they are used in conjunction with independent methods.


Assuntos
Desoxirribonucleosídeos/biossíntese , Neurônios/metabolismo , Animais , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/metabolismo , Terapia Genética/métodos , Humanos , Modelos Biológicos , Neurônios/citologia , Transplante de Células-Tronco , Células-Tronco/citologia , Células-Tronco/metabolismo
15.
Adv Drug Deliv Rev ; 56(12): 1765-91, 2004 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-15381333

RESUMO

In addition to being the main source of cerebrospinal fluid (CSF) secretion, the choroid plexuses are involved in the supply and distribution of peptides to brain, the removal of toxic metabolites, the excretion of xenobiotics, and the delivery of drugs as an alternative route to the blood-brain barrier (BBB). The discovery of proton-coupled oligopeptide transporters in choroid plexus has generated considerable interest regarding their physiologic role at the blood-cerebrospinal fluid interface and their potential for peptide/antagonist pharmacotherapy in the central nervous system. Many of the same factors that affect the disposition of naturally occurring peptides in brain will also affect the disposition of exogenously delivered peptide or peptidomimetic drugs. Therefore, this review addresses three main areas: (1) choroid plexus structure, physiology, and barrier function in relation to peptide transport; (2) polypeptide transport and secretion mechanisms into cerebrospinal fluid; and (3) molecular physiology, expression, and functional activity of proton-coupled oligopeptide transporters in choroid plexus.


Assuntos
Barreira Hematoencefálica , Líquido Cefalorraquidiano/metabolismo , Plexo Corióideo/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Peptídeos/metabolismo , Animais , Transporte Biológico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA