Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Biomark Res ; 11(1): 64, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316916

RESUMO

BACKGROUND: Late diagnosis is one of the major confounders in oral squamous cell carcinoma (OSCC). Despite recent advances in molecular diagnostics, no disease-specific biomarkers are clinically available for early risk prediction of OSCC. Therefore, it is important to identify robust biomarkers that are detectable using non-invasive liquid biopsy techniques to facilitate the early diagnosis of oral cancer. This study identified potential salivary exosome-derived miRNA biomarkers and crucial miRNA-mRNA networks/underlying mechanisms responsible for OSCC progression. METHODS: Small RNASeq (n = 23) was performed in order to identify potential miRNA biomarkers in both tissue and salivary exosomes derived from OSCC patients. Further, integrated analysis of The Cancer Genome Atlas (TCGA) datasets (n = 114), qPCR validation on larger patient cohorts (n = 70) and statistical analysis with various clinicopathological parameters was conducted to assess the effectiveness of the identified miRNA signature. miRNA-mRNA networks and pathway analysis was conducted by integrating the transcriptome sequencing and TCGA data. The OECM-1 cell line was transfected with the identified miRNA signature in order to observe its effect on various functional mechanisms such as cell proliferation, cell cycle, apoptosis, invasive as well as migratory potential and the downstream signaling pathways regulated by these miRNA-mRNA networks. RESULTS: Small RNASeq and TCGA data identified 12 differentially expressed miRNAs in OSCC patients compared to controls. On validating these findings in a larger cohort of patients, miR-140-5p, miR-143-5p, and miR-145-5p were found to be significantly downregulated. This 3-miRNA signature demonstrated higher efficacy in predicting disease progression and clinically correlated with poor prognosis (p < 0.05). Transcriptome, TCGA, and miRNA-mRNA network analysis identified HIF1a, CDH1, CD44, EGFR, and CCND1 as hub genes regulated by the miRNA signature. Further, transfection-mediated upregulation of the 3-miRNA signature significantly decreased cell proliferation, induced apoptosis, resulted in G2/M phase cell cycle arrest and reduced the invasive and migratory potential by reversing the EMT process in the OECM-1 cell line. CONCLUSIONS: Thus, this study identifies a 3-miRNA signature that can be utilized as a potential biomarker for predicting disease progression of OSCC and uncovers the underlying mechanisms responsible for converting a normal epithelial cell into a malignant phenotype.

3.
J Histotechnol ; 45(4): 148-160, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36377481

RESUMO

The health and activity of photoreceptors and Bruch's membrane are promoted by the retinal pigment epithelium (RPE), which is essential for normal vision. Age-related macular degeneration (AMD), diabetic retinopathy (DR), and proliferative vitreoretinopathy (PVR) are examples of retinopathies that result in vision loss. Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells transform into mesenchymal cells as a result of a faulty microenvironment, and it is associated with the oculopathies stated above. Cell differentiation, autophagy, growth factors (GFs), the blood-retinal barrier (BRB), and other complicated signaling pathways all contribute to proper morphology, and their disruption by harmful compounds has an impact on RPE function. The inducer and suppressor of EMT in RPE, on the other hand, are unknown. The current article reviews the experimental research investigations, suggested that certain modulators like glucosamine (Glc-N) and bradykinin (BK) suppress the TGFß signaling pathway and that other variables like oxidative stress triggered EMT, which is not found in normal RPE homeostasis. Finding molecular targets and treatments to prevent and restore RPE function, as well as understanding how EMT regulators affect RPE degeneration, are therefore crucial.


Assuntos
Transição Epitelial-Mesenquimal , Vitreorretinopatia Proliferativa , Humanos , Transição Epitelial-Mesenquimal/fisiologia , Epitélio Pigmentado da Retina/metabolismo , Vitreorretinopatia Proliferativa/metabolismo , Células Epiteliais/metabolismo , Homeostase , Pigmentos da Retina/metabolismo
4.
Mol Divers ; 26(6): 3337-3356, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35147860

RESUMO

In the past two decades, the treatment of metastatic colorectal cancer (mCRC) has been revolutionized as multiple cytotoxic, biological, and targeted drugs are being approved. Unfortunately, tumors treated with single targeted agents or therapeutics usually develop resistance. According to pathway-oriented screens, mCRC cells evade EGFR inhibition by HER2 amplification and/or activating Kras-MEK downstream signaling. Therefore, treating mCRC patients with dual EGFR/HER2 inhibitors, MEK inhibitors, or the combination of the two drugs envisaged to prevent the resistance development which eventually improves the overall survival rate. In the present study, we aimed to screen potential phytochemical lead compounds that could multi-target EGFR, HER2, and MEK1 (Mitogen-activated protein kinase kinase) using a computer-aided drug design approach that includes molecular docking, endpoint binding free energy calculation using MM-GBSA, ADMET, and molecular dynamics (MD) simulations. Docking studies revealed that, unlike all other ligands, apigenin and kaempferol exhibit the highest docking score against all three targets. Details of ADMET analysis, MM/GBSA, and MD simulations helped us to conclusively determine apigenin and kaempferol as potentially an inhibitor of EGFR, HER2, and MEK1 apigenin and kaempferol against mCRC at a systemic level. Additionally, both apigenin and kaempferol elicited antiangiogenic properties in a dose-dependent manner. Collectively, these findings provide the rationale for drug development aimed at preventing CRC rather than intercepting resistance.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apigenina/farmacologia , Apigenina/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia
5.
Can J Physiol Pharmacol ; 100(3): 240-251, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34614370

RESUMO

Cancer cachexia is mainly characterized by wasting of skeletal muscles and fat and body weight loss, along with severe complications of major organs like liver, heart, brain and bone. There can be diminishing performance of these major organs as cancer cachexia progresses, one such drastic effect on the cardiac system. In the present study, differential effect of histone deacetylase inhibitors (HDACi) on cardiac complications associated with cancer cachexia is studied. Two models were used to induce cancer cachexia: B16F1 induced metastatic cancer cachexia and Lewis lung carcinoma cell - induced cancer cachexia. Potential of Class I HDACi entinostat, Class II HDACi MC1568, and nonspecific HDACi sodium butyrate on cardiac complications were evaluated using the cardiac hypertrophy markers, hemodynamic markers, and cardiac markers along with histopathological evaluation of heart sections by Periodic acid-Schiff staining, Masson's trichrome staining, Picro-sirius red staining, and haematoxylin and eosin staining. Immunohistochemistry evaluation by vimentin and caspase 3 protein expression was evaluated. Entinostat showed promising results by attenuating the cardiac complications, and MC1568 treatment further exacerbated the cardiac complications, while non-conclusive effect were recorded after treatment with sodium butyrate. This study will be helpful in evaluating other HDACi for potential in cardiac complications associated with cancer cachexia.


Assuntos
Benzamidas/uso terapêutico , Caquexia/tratamento farmacológico , Caquexia/etiologia , Cardiopatias/tratamento farmacológico , Cardiopatias/etiologia , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias/complicações , Piridinas/uso terapêutico , Animais , Benzamidas/farmacologia , Ácido Butírico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Feminino , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/efeitos adversos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Piridinas/farmacologia , Pirróis/efeitos adversos
6.
Toxicol Appl Pharmacol ; 423: 115576, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34000264

RESUMO

Metastatic breast cancer is a prevalent life-threatening disease. Paclitaxel (PTX) is widely used in metastatic breast cancer therapy, but the side effects limit its chemotherapeutic application. Multidrug strategies have recently been used to maximize potency and decrease the toxicity of a particular drug by reducing its dosage. Therefore, we have evaluated the combined anti-cancerous effect of PTX with tested natural compounds (andrographolide (AND), silibinin (SIL), mimosine (MIM) and trans-anethole (TA)) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, trypan blue dye exclusion assay, proliferating cell nuclear antigen (PCNA) staining, network pharmacology, molecular docking, molecular dynamics (MD) and in vivo chick chorioallantoic membrane (CAM) angiogenesis assay. We observed a reduction in the IC50 value of PTX with tested natural compounds. Further, the network pharmacology-based analysis of compound-disease-target (C-D-T) network showed that PTX, AND, SIL, MIM and TA targeted 55, 61, 56, 31 and 18 proteins of metastatic breast cancer, respectively. Molecular docking results indicated that AND and SIL inhibited the C-D-T network's core target kinase insert domain receptor (KDR) protein more effectively than others. While MD showed that the binding of AND with KDR was stronger and more stable than others. In trypan blue dye exclusion assay and PCNA staining, AND and SIL along with PTX were found to be more effective than PTX alone. CAM assay results suggested that AND, SIL and TA increase the anti-angiogenic potential of PTX. Thus, natural compounds can be used to improve the anti-cancer potential of PTX.


Assuntos
Antineoplásicos Fitogênicos/metabolismo , Produtos Biológicos/metabolismo , Neoplasias da Mama/metabolismo , Paclitaxel/metabolismo , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Produtos Biológicos/administração & dosagem , Produtos Biológicos/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Embrião de Galinha , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Humanos , Simulação de Acoplamento Molecular/métodos , Paclitaxel/administração & dosagem , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Resultado do Tratamento
7.
Exp Eye Res ; 197: 108072, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32473169

RESUMO

Proliferative retinopathies are associated with formation of fibrous epiretinal membranes. At present, there is no pharmacological intervention for the treatment of retinopathies. Cytokines such as TGFß are elevated in the vitreous humor of the patients with proliferative vitro-retinopathy, diabetic retinopathy and age-related macular degeneration. TGFß isoforms lead to epithelial-mesenchymal transition (EMT) or trans-differentiation of the retinal pigment epithelial (RPE) cells. PI3K/Akt and MAPK/Erk pathways play important roles in the EMT of RPE cells. Therefore, inhibition of EMT by pharmacological agents is an important therapeutic strategy in retinopathy. Dichloroacetate (DCA) is shown to prevent proliferation and EMT of cancer cell lines but its effects are not explored on the prevention of EMT of RPE cells. In the present study, we have investigated the role of DCA in preventing TGFß2 induced EMT of RPE cell line, ARPE-19. A wound-healing assay was utilized to detect the anti-EMT effect of DCA. The expressions of EMT and cell adhesion markers were carried out by immunofluorescence, western blotting, and quantitative real-time PCR. The expression of MAPK/Erk and PI3K/Akt pathway members was carried out using western blotting. We found that TGFß2 exposure leads to an increase in the wound healing response, expression of EMT markers (Fibronectin, Collagen I, N-cadherin, MMP9, S100A4, α-SMA, Snai1, Slug) and a decrease in the expression of cell adhesion/epithelial markers (ZO-1, Connexin 43, E-cadherin). These changes were accompanied by the activation of PI3K/Akt and MAPK/Erk pathways. Simultaneous exposure of DCA along with TGFß2 significantly inhibited wound healing response, expression of EMT markers and cell adhesion/epithelial markers. Furthermore, DCA and TGFß2 effectively attenuated the activation of MAPK/Erk/JNK and PI3K/Akt/GSK3ß pathways. Our results demonstrate that DCA has a strong anti-EMT effect on the ARPE-19 cells and hence can be utilized as a therapeutic agent in the prevention of proliferative retinopathies.


Assuntos
Ácido Dicloroacético/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Vitreorretinopatia Proliferativa/metabolismo , Western Blotting , Diferenciação Celular , Linhagem Celular , Movimento Celular , Humanos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais , Vitreorretinopatia Proliferativa/patologia
8.
Biochim Biophys Acta ; 1863(1): 1-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26469128

RESUMO

Previous studies in our laboratory have shown that the neuron-specific specificity protein 4 (Sp4) transcriptionally regulates many excitatory neurotransmitter receptor subunit genes, such as those for GluN1, GluN2A, and GluN2B of N-methyl-d-aspartate (NMDA) receptors and Gria2 of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. It also regulates Atp1a1 and Atp1b1 subunit genes of Na(+)/K(+)-ATPase, a major energy-consuming enzyme, as well as all 13 subunits of cytochrome c oxidase (COX), an important energy-generating enzyme. Thus, there is a tight coupling between energy consumption, energy production, and excitatory neuronal activity at the transcriptional level in neurons. The question is whether inhibitory neurotransmitter receptors are also regulated by Sp4. In the present study, we tested our hypothesis that Sp4 regulates receptor subunit genes of a major inhibitory neurotransmitter, GABA, specifically GABAA receptors. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, real-time quantitative PCR, chromatin immunoprecipitation, promoter mutational analysis, over-expression and shRNA of Sp4, functional assays, and western blots, we found that Sp4 functionally regulates the transcription of Gabra1 (GABAA α1) and Gabra2 (GABAA α2), but not Gabra3 (GABAA α3) subunit genes. The binding sites of Sp4 are conserved among rats, humans, and mice. Thus, our results substantiate our hypothesis that Sp4 plays a key role in regulating the transcription of GABAA receptor subunit genes. They also indicate that Sp4 is in a position to transcriptionally regulate the balance between excitatory and inhibitory neurochemical expressions in neurons.


Assuntos
Neurônios GABAérgicos/metabolismo , Regulação da Expressão Gênica/fisiologia , Receptores de N-Metil-D-Aspartato/biossíntese , Fator de Transcrição Sp4/metabolismo , Transcrição Gênica/fisiologia , Animais , Células Cultivadas , Neurônios GABAérgicos/citologia , Camundongos , Ratos , Receptores de AMPA/biossíntese , Receptores de AMPA/genética , Receptores de N-Metil-D-Aspartato/genética , ATPase Trocadora de Sódio-Potássio/biossíntese , ATPase Trocadora de Sódio-Potássio/genética , Fator de Transcrição Sp4/genética
9.
J Biosci ; 40(2): 313-24, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25963259

RESUMO

Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) may contribute to the development of posterior capsular opacification (PCO), which leads to visual impairment. Andrographolide has been shown to have therapeutic potential against various cancers. However, its effect on human LECs is still unknown. The purpose of this study is to evaluate the effect of andrographolide on EMT induced by growth factors in the fetal human lens epithelial cell line (FHL 124). Initially the LECs were treated with growth factors (TGF-beta 2 and bFGF) to induce EMT. Subsequently these EMT-induced cells were treated with andrographolide at 100 and 500 nM concentrations for 24 h. Our results showed that FHL 124 cells treated with growth factors had a significant decrease in protein and m-RNA levels of epithelial markers pax6 and E-Cadherin. After administering andrographolide, these levels significantly increased. It was noticed that EMT markers alpha-SMA, fibronectin and collagen IV significantly decreased after treatment with andrographolide when compared to the other group. Treatment with andrographolide significantly inhibited phosphorylation of ERK and JNK. Cell cycle analysis showed that andrographolide did not arrest cells at G0/G1 or G2/M at tested concentrations. Our findings suggest that andrographolide helps sustain epithelial characteristics by modulating EMT markers and inhibiting the mitogen-activated protein kinase (MAPK) signalling pathway in LECs. Hence it can prove to be useful in curbing EMT-mediated PCO.


Assuntos
Catarata/prevenção & controle , Diterpenos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Cristalino/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Actinas/metabolismo , Linhagem Celular , Colágeno Tipo IV/metabolismo , Células Epiteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Fibronectinas/metabolismo , Flavonoides/farmacologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Fosforilação/efeitos dos fármacos
10.
Exp Eye Res ; 128: 23-6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25220506

RESUMO

Lens epithelial cell proliferation, migration, and transdifferentiation are involved in the development of subcapsular cataracts and postoperative capsular opacification (PCO). PI3K/Akt pathway is involved in the proliferation and migration of lens epithelial cells. Andrographolide is the main bioactive component of Andrographis paniculata and is known to possess anti-proliferative and anti-migratory activities. The purpose of this study is to evaluate the effect of andrographolide on proliferation and migration induced by growth factors (TGF-ß and bFGF) in the lens epithelial cell line, FHL 124. We have also evaluated the role of the PI3K/Akt pathway and its alteration by andrographolide during proliferation and migration of lens epithelial cells. The results showed that andrographolide significantly inhibited proliferation in a dose and time dependent manner. The growth factors, TGF-ß and bFGF, induced migration of lens epithelial cells, which was lowered by andrographolide. The growth factors also up regulated phosphorylated Akt (Ser473) and Akt (Thr308), which was abolished by simultaneous treatment of andrographolide. Similar changes were also observed with the PI3K inhibitor, LY290042. Our findings suggest that andrographolide reduces proliferation, migration, and phosphorylated Akt levels in lens epithelial cells. Hence andrographolide can be utilized for the prevention of PCO.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diterpenos/farmacologia , Células Epiteliais/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Bromodesoxiuridina/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Células Epiteliais/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Indóis/metabolismo , Cristalino/citologia , Cristalino/metabolismo , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/fisiologia
11.
Biochim Biophys Acta ; 1843(6): 1196-206, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24576410

RESUMO

The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are important glutamatergic receptors mediating fast excitatory synaptic transmission in the brain. The regulation of the four subunits of AMPA receptors, GluA1-4, is poorly understood. Excitatory synaptic transmission is highly energy-demanding, and this energy is derived mainly from the oxidative pathway. Recently, we found that specificity factor regulates all subunits of cytochrome c oxidase (COX), a critical energy-generating enzyme. COX is also regulated by nuclear respiratory factor 1 (NRF-1), which transcriptionally controls the Gria2 (GluA2) gene of AMPA receptors. The goal of the present study was to test our hypothesis that Sp-factors (Sp1, Sp3, and/or Sp4) also regulate AMPA subunit genes. If so, we wish to determine if Sp-factors and NRF-1 function via a complementary, concurrent and parallel, or a combination of complementary and concurrent/parallel mechanism. By means of multiple approaches, including electrophoretic mobility shift and supershift assays, chromatin immunoprecipitation, promoter mutations, real-time quantitative PCR, and western blot analysis, we found that Sp4, but not Sp1 or Sp3, regulates the Gria2, but not Gria1, 3, or 4, subunit gene of the AMPA receptor in a concurrent and parallel manner with NRF-1. Thus, Sp4 and NRF-1 both mediate the tight coupling between neuronal activity and energy metabolism at the transcriptional level.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neuroblastoma/genética , Receptores de AMPA/genética , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp3/metabolismo , Fator de Transcrição Sp4/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Western Blotting , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Luciferases/metabolismo , Camundongos , Dados de Sequência Molecular , Neuroblastoma/metabolismo , Regiões Promotoras Genéticas/genética , Subunidades Proteicas , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de AMPA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp3/genética , Fator de Transcrição Sp4/genética , Transcrição Gênica , Células Tumorais Cultivadas
12.
Eur J Neurosci ; 39(4): 566-78, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24219545

RESUMO

A major source of energy demand in neurons is the Na(+)/K(+)-ATPase pump that restores the ionic gradient across the plasma membrane subsequent to depolarizing neuronal activity. The energy comes primarily from mitochondrial oxidative metabolism, of which cytochrome c oxidase (COX) is a key enzyme. Recently, we found that all 13 subunits of COX are regulated by specificity (Sp) factors, and that the neuron-specific Sp4, but not Sp1 or Sp3, regulates the expression of key glutamatergic receptor subunits as well. The present study sought to test our hypothesis that Sp4 also regulates Na(+)/K(+)-ATPase subunit genes in neurons. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, chromatin immunoprecipitation, promoter mutational analysis, over-expression, and RNA interference studies, we found that Sp4, with minor contributions from Sp1 and Sp3, functionally regulate the Atp1a1, Atp1a3, and Atp1b1 subunit genes of Na(+)/K(+)-ATPase in neurons. Transcripts of all three genes were up-regulated by depolarizing KCl stimulation and down-regulated by the impulse blocker tetrodotoxin (TTX), indicating that their expression was activity-dependent. Silencing of Sp4 blocked the up-regulation of these genes induced by KCl, whereas over-expression of Sp4 rescued them from TTX-induced suppression. The effect of silencing or over-expressing Sp4 on primary neurons was much greater than those of Sp1 or Sp3. The binding sites of Sp factors on these genes are conserved among mice, rats and humans. Thus, Sp4 plays an important role in the transcriptional coupling of energy generation and energy consumption in neurons.


Assuntos
Metabolismo Energético , Potenciais da Membrana , Neurônios/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Fator de Transcrição Sp4/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Células Cultivadas , Camundongos , Dados de Sequência Molecular , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Cloreto de Potássio/farmacologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , ATPase Trocadora de Sódio-Potássio/genética , Fator de Transcrição Sp4/química , Fator de Transcrição Sp4/genética , Tetrodotoxina/farmacologia
13.
J Neurochem ; 127(4): 496-508, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24032355

RESUMO

Neurons are highly dependent on oxidative metabolism for their energy supply, and cytochrome c oxidase (COX) is a key energy-generating enzyme in the mitochondria. A unique feature of COX is that it is one of only four proteins in mammalian cells that are bigenomically regulated. Of its thirteen subunits, three are encoded in the mitochondrial genome and ten are nuclear-encoded on nine different chromosomes. The mechanism of regulating this multisubunit, bigenomic enzyme poses a distinct challenge. In recent years, we found that nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2) mediate such bigenomic coordination. The latest candidate is the specificity factor (Sp) family of proteins. In N2a cells, we found that Sp1 regulates all 13 COX subunits. However, we discovered recently that in primary neurons, it is Sp4 and not Sp1 that regulates some of the key glutamatergic receptor subunit genes. The question naturally arises as to the role of Sp4 in regulating COX in primary neurons. The present study utilized multiple approaches, including chromatin immunoprecipitation, promoter mutational analysis, knockdown and over-expression of Sp4, as well as functional assays to document that Sp4 indeed functionally regulate all 13 subunits of COX as well as mitochondrial transcription factors A and B. The present study discovered that among the specificity family of transcription factors, it is the less known neuron-specific Sp4 that regulates the expression of all 13 subunits of mitochondrial cytochrome c oxidase (COX) enzyme in primary neurons. Sp4 also regulates the three mitochondrial transcription factors (TFAM, TFB1M, and TFB2M) and a COX assembly protein SURF-1 in primary neurons.


Assuntos
Núcleo Celular/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Genoma Mitocondrial , Neurônios/metabolismo , Fator de Transcrição Sp4/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Técnicas de Silenciamento de Genes , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Fator de Transcrição Sp4/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Córtex Visual/citologia
14.
Indian J Med Res ; 137(1): 117-24, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23481060

RESUMO

BACKGROUND & OBJECTIVES: Cytoskeletal proteins are deregulated during oxidative stress and cataract formation. However, estrogen which protects against cataract formation and harmful effects of oxidative stress has not been tested on the cytoskeleton of lens epithelial cells (LECs). The current study was undertaken to assess if the protection rendered to LECs by estrogen was mediated by preserving the cytoskeletal proteins. METHODS: Oxidative stress was induced by 50 µM of H 2 O 2 in cultured goat LECs (gLECs) and effect of 1 µM 17ß-estradiol (E 2 ) was tested. After treatment, morphological analysis of cells was carried out using haematoxylin-eosin staining and cell density was also quantified. Cell viability was determined using Hoechst (Ho), YO-Pro (YP) and propidium iodide (PI). F-actin and vimentin were localized using phalloidin and anti-vimentin antibody, respectively, and viewed under fluorescence microscopy. Vimentin was further analysed at protein level by Western blotting. RESULTS: H 2 O 2 led to increased condensation of nucleus, cell death and apoptosis but these were prevented with pre- and co-treatment of E 2 with increase in cell viability (P<0.001). E 2 also prevented H 2 O 2 mediated depolymerization of cytoskeleton but was not able to reverse the changes when given after induction of oxidative stress. INTERPRETATION & CONCLUSIONS: Our findings showed that E 2 helped in preventing deteriorating effect of H 2 O 2 , inhibited cell death, apoptosis and depolymerisation of cytoskeletal proteins in LECs. However, the exact mechanism by which estrogen renders this protection to cytoskeleton of lens epithelial cells remains to be determined.


Assuntos
Catarata/patologia , Células Epiteliais/efeitos dos fármacos , Cristalino/efeitos dos fármacos , Estresse Oxidativo , Animais , Apoptose/efeitos dos fármacos , Catarata/etiologia , Catarata/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/patologia , Células Epiteliais/citologia , Estradiol/administração & dosagem , Estrogênios/administração & dosagem , Cabras , Humanos , Peróxido de Hidrogênio/toxicidade , Cristalino/citologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
15.
J Cataract Refract Surg ; 39(4): 617-23, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23522583

RESUMO

PURPOSE: To compare changes in the incision's histomorphology and denaturation of collagen I in rabbit eyes having microcoaxial phacoemulsification through 2.2 mm and 1.8 mm incision-compatible systems. DESIGN: Randomized experimental trial. SETTING: Iladevi Cataract & IOL Research Centre, Ahmedabad, India. METHODS: Thirty rabbit eyes were randomized into Group 1 (microcoaxial phacoemulsification through 2.2 mm incisions using Infiniti system [torsional ultrasound]) and Group 2 (microcoaxial phacoemulsification through 1.8 mm incisions using Stellaris system [longitudinal ultrasound]). Each group was then divided into 3 subgroups of 5 eyes each based on 1 of the 3 intervention options: phacoemulsification only, intraocular lens (IOL) insertion only, and phacoemulsification with IOL insertion. Left eyes were randomized for microcoaxial phacoemulsification, and right eyes were treated as controls. RESULTS: After phacoemulsification, eyes in Group 1 showed loss of epithelium at the roof of the incisions and Descemet membrane detachment at the floor of the incisions. These findings did not change after IOL insertion. After phacoemulsification, eyes in Group 2 showed loss of epithelium, but Descemet membrane remained attached. There was a longitudinal split in the incision's stroma in the direction of internal entry. The stromal damage increased after IOL implantation. Immunofluorescence studies showed no obvious irregularities in the arrangement of collagen I in either group. A dot blot analysis showed significant denaturation of collagen I in Group 2. CONCLUSION: The histomorphology of the 2.2 mm system incision showed localized Descemet membrane detachment and endothelial cell loss. The 1.8 mm system incision showed exaggerated stromal damage after IOL insertion.


Assuntos
Córnea/patologia , Córnea/cirurgia , Implante de Lente Intraocular , Microcirurgia/métodos , Facoemulsificação/métodos , Animais , Colágeno Tipo I/metabolismo , Córnea/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Microscopia de Fluorescência , Coelhos , Cicatrização
16.
Biochim Biophys Acta ; 1833(1): 48-58, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23085505

RESUMO

Neuronal activity and energy metabolism are tightly coupled processes. Previously, we found that nuclear respiratory factor 1 (NRF-1) transcriptionally co-regulates energy metabolism and neuronal activity by regulating all 13 subunits of the critical energy generating enzyme, cytochrome c oxidase (COX), as well as N-methyl-d-aspartate (NMDA) receptor subunits 1 and 2B, GluN1 (Grin1) and GluN2B (Grin2b). We also found that another transcription factor, nuclear respiratory factor 2 (NRF-2 or GA-binding protein) regulates all subunits of COX as well. The goal of the present study was to test our hypothesis that NRF-2 also regulates specific subunits of NMDA receptors, and that it functions with NRF-1 via one of three mechanisms: complementary, concurrent and parallel, or a combination of complementary and concurrent/parallel. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation of mouse neuroblastoma cells and rat visual cortical tissue, promoter mutations, real-time quantitative PCR, and western blot analysis, NRF-2 was found to functionally regulate Grin1 and Grin2b genes, but not any other NMDA subunit genes. Grin1 and Grin2b transcripts were up-regulated by depolarizing KCl, but silencing of NRF-2 prevented this up-regulation. On the other hand, over-expression of NRF-2 rescued the down-regulation of these subunits by the impulse blocker TTX. NRF-2 binding sites on Grin1 and Grin2b are conserved among species. Our data indicate that NRF-2 and NRF-1 operate in a concurrent and parallel manner in mediating the tight coupling between energy metabolism and neuronal activity at the molecular level.


Assuntos
Metabolismo Energético/genética , Fator de Transcrição de Proteínas de Ligação GA/fisiologia , Fator 1 Nuclear Respiratório/fisiologia , Receptores de N-Metil-D-Aspartato/genética , Transmissão Sináptica/genética , Animais , Células Cultivadas , Metabolismo Energético/fisiologia , Fator de Transcrição de Proteínas de Ligação GA/genética , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Modelos Biológicos , Neurônios/metabolismo , Neurônios/fisiologia , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/genética , Transmissão Sináptica/fisiologia
17.
J Biosci ; 37(6): 979-87, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23151788

RESUMO

Specimens of the anterior lens capsule with an attached monolayer of lens epithelial cells (LECs) were obtained from patients (n=52) undergoing cataract surgery. Specimens were divided into three groups based on the type of cataract: nuclear cataract, cortical cataract and posterior subcapsular cataract (PSC). Clear lenses (n=11) obtained from donor eyes were used as controls. Expression was studied by immunofluorescence, real-time PCR and Western blot. Statistical analysis was done using the student's t-test. Immunofluorescence results showed punctate localization of Cx43 at the cell boundaries in controls, nuclear cataract and PSC groups. In the cortical cataract group, cytoplasmic pools of Cx43 without any localization at the cell boundaries were observed. Real-time PCR results showed significant up-regulation of Cx43 in nuclear and cortical cataract groups. Western blot results revealed significant increase in protein levels of Cx43 and significant decrease of ZO-1 in all three cataract groups. Protein levels of alpha-catenin were decreased significantly in nuclear and cortical cataract group. There was no significant change in expression of beta-catenin in the cataractous groups. Our findings suggest that ZO-1 and alpha-catenin are important for gap junctions containing Cx43 in the LECs. Alterations in cell junction proteins may play a role during formation of different types of cataract.


Assuntos
Catarata/metabolismo , Conexina 43/metabolismo , Cristalino/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , alfa Catenina/metabolismo , beta Catenina/metabolismo , Sequência de Bases , Western Blotting , Estudos de Casos e Controles , Primers do DNA , Células Epiteliais/metabolismo , Imunofluorescência , Humanos , Reação em Cadeia da Polimerase em Tempo Real
18.
J Biol Chem ; 287(48): 40381-90, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23048038

RESUMO

BACKGROUND: NRF-1 regulates mediators of neuronal activity and energy generation. RESULTS: NRF-1 transcriptionally regulates Na(+)/K(+)-ATPase subunits α1 and ß1. CONCLUSION: NRF-1 functionally regulates mediators of energy consumption in neurons. SIGNIFICANCE: NRF-1 mediates the tight coupling of neuronal activity, energy generation, and energy consumption at the molecular level. Energy generation and energy consumption are tightly coupled to neuronal activity at the cellular level. Na(+)/K(+)-ATPase, a major energy-consuming enzyme, is well expressed in neurons rich in cytochrome c oxidase, an important enzyme of the energy-generating machinery, and glutamatergic receptors that are mediators of neuronal activity. The present study sought to test our hypothesis that the coupling extends to the molecular level, whereby Na(+)/K(+)-ATPase subunits are regulated by the same transcription factor, nuclear respiratory factor 1 (NRF-1), found recently by our laboratory to regulate all cytochrome c oxidase subunit genes and some NMDA and AMPA receptor subunit genes. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation, promoter mutational analysis, and real-time quantitative PCR, NRF-1 was found to functionally bind to the promoters of Atp1a1 and Atp1b1 genes but not of the Atp1a3 gene in neurons. The transcripts of Atp1a1 and Atp1b1 subunit genes were up-regulated by KCl and down-regulated by tetrodotoxin. Atp1b1 is positively regulated by NRF-1, and silencing of NRF-1 with small interference RNA blocked the up-regulation of Atp1b1 induced by KCl, whereas overexpression of NRF-1 rescued these transcripts from being suppressed by tetrodotoxin. On the other hand, Atp1a1 is negatively regulated by NRF-1. The binding sites of NRF-1 on Atp1a1 and Atp1b1 are conserved among mice, rats, and humans. Thus, NRF-1 regulates key Na(+)/K(+)-ATPase subunits and plays an important role in mediating the tight coupling between energy consumption, energy generation, and neuronal activity at the molecular level.


Assuntos
Metabolismo Energético , Regulação Enzimológica da Expressão Gênica , Neurônios/enzimologia , Fator 1 Nuclear Respiratório/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , Neurônios/metabolismo , Fator 1 Nuclear Respiratório/genética , Regiões Promotoras Genéticas , Ligação Proteica , Ratos , ATPase Trocadora de Sódio-Potássio/química
19.
PLoS Genet ; 8(12): e1003070, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284286

RESUMO

Bladder exstrophy epispadias complex (BEEC) is a severe congenital anomaly; however, the genetic and molecular mechanisms underlying the formation of BEEC remain unclear. TP63, a member of TP53 tumor suppressor gene family, is expressed in bladder urothelium and skin over the external genitalia during mammalian development. It plays a role in bladder development. We have previously shown that p63(-/-) mouse embryos developed a bladder exstrophy phenotype identical to human BEEC. We hypothesised that TP63 is involved in human BEEC pathogenesis. RNA was extracted from BEEC foreskin specimens and, as in mice, ΔNp63 was the predominant p63 isoform. ΔNp63 expression in the foreskin and bladder epithelium of BEEC patients was reduced. DNA was sequenced from 163 BEEC patients and 285 ethnicity-matched controls. No exon mutations were detected. Sequencing of the ΔNp63 promoter showed 7 single nucleotide polymorphisms and 4 insertion/deletion (indel) polymorphisms. Indel polymorphisms were associated with an increased risk of BEEC. Significantly the sites of indel polymorphisms differed between Caucasian and non-Caucasian populations. A 12-base-pair deletion was associated with an increased risk with only Caucasian patients (p = 0.0052 Odds Ratio (OR) = 18.33), whereas a 4-base-pair insertion was only associated with non-Caucasian patients (p = 0.0259 OR = 4.583). We found a consistent and statistically significant reduction in transcriptional efficiencies of the promoter sequences containing indel polymorphisms in luciferase assays. These findings suggest that indel polymorphisms of the ΔNp63 promoter lead to a reduction in p63 expression, which could lead to BEEC.


Assuntos
Extrofia Vesical , Epispadia , Mutação INDEL/genética , Regiões Promotoras Genéticas , Fatores de Transcrição , Proteínas Supressoras de Tumor , Animais , Extrofia Vesical/genética , Extrofia Vesical/patologia , Epispadia/genética , Epispadia/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Camundongos , Mutagênese Insercional , Polimorfismo Genético , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
20.
J Cataract Refract Surg ; 37(1): 88-96, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21183104

RESUMO

PURPOSE: To evaluate posterior capsule opacification (PCO) development after cataract surgery in eyes with or without a history of steroid use. SETTING: Iladevi Cataract & IOL Research Centre, Ahmedabad, India. DESIGN: Comparative case series. METHODS: This study comprised consecutive patients with a history of steroid intake (oral, inhaled, injectable, or topical) for at least 4 months who developed posterior subcapsular cataract (PSC) (study group) and patients without a history of steroid intake with uncomplicated PSC (control group). Standardized surgery was performed in both groups. Digital retroillumination photographic documentation was performed 1 month and 1 year postoperatively. The digital images were analyzed for PCO using Evaluation of Posterior Capsule Opacification (EPCO) software; the entire intraocular lens (IOL) optic and the central 3.0 mm optic area were evaluated. The EPCO score and EPCO area were determined. RESULTS: One year postoperatively, the mean EPCO score was statistically significantly higher in the study group (n = 30) than in the control group (n = 60) (0.33 ± 0.37 [SD] versus 0.15 ± 0.26), as was the mean EPCO area (0.323 ± 0.36 versus 0.15 ± 0.26) (both P<.04). Within the central 3.0 mm optic area, the mean EPCO scores (0.149 ± 0.309 versus 0.003 ± 0.016 P<.04) and mean EPCO area values (0.149 ± 0.309 versus 0.003 ± 0.016) were statistically significantly higher in the study group (P<.04). CONCLUSION: Steroid-induced PSC was associated with a higher risk for PCO after cataract surgery at the 1-year follow-up. FINANCIAL DISCLOSURE: No author has a financial or proprietary interest in any material or method mentioned.


Assuntos
Catarata/induzido quimicamente , Glucocorticoides/efeitos adversos , Cápsula Posterior do Cristalino/efeitos dos fármacos , Administração Oral , Administração Tópica , Adulto , Asma/tratamento farmacológico , Estudos de Casos e Controles , Oftalmopatias/tratamento farmacológico , Feminino , Glucocorticoides/administração & dosagem , Humanos , Implante de Lente Intraocular , Masculino , Pessoa de Meia-Idade , Nebulizadores e Vaporizadores , Facoemulsificação , Cápsula Posterior do Cristalino/patologia , Estudos Prospectivos , Acuidade Visual/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA