Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39215466

RESUMO

OBJECTIVE: Limb girdle muscular dystrophies (LGMDs) are a group of genetically heterogeneous autosomal conditions with some degree of phenotypic homogeneity. LGMD is defined as having onset >2 years of age with progressive proximal weakness, elevated serum creatine kinase levels and dystrophic features on muscle biopsy. Advances in massively parallel sequencing have led to a surge in genes linked to LGMD. METHODS: The ClinGen Muscular Dystrophies and Myopathies gene curation expert panel (MDM GCEP, formerly Limb Girdle Muscular Dystrophy GCEP) convened to evaluate the strength of evidence supporting gene-disease relationships (GDR) using the ClinGen gene-disease clinical validity framework to evaluate 31 genes implicated in LGMD. RESULTS: The GDR was exclusively LGMD for 17 genes, whereas an additional 14 genes were related to a broader phenotype encompassing congenital weakness. Four genes (CAPN3, COL6A1, COL6A2, and COL6A3) were split into two separate disease entities, based on each displaying both dominant and recessive inheritance patterns, resulting in curation of 35 GDRs. Of these, 30 (86%) were classified as definitive, 4 (11%) as moderate, and 1 (3%) as limited. Two genes, POMGNT1 and DAG1, though definitively related to myopathy, currently have insufficient evidence to support a relationship specifically with LGMD. INTERPRETATION: The expert-reviewed assertions on the clinical validity of genes implicated in LGMDs form an invaluable resource for clinicians and molecular geneticists. We encourage the global neuromuscular community to publish case-level data that help clarify disputed or novel LGMD associations.

2.
J Med Genet ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39209426

RESUMO

BACKGROUND: Weakness of facial, ocular and axial muscles is a common clinical presentation in congenital myopathies caused by pathogenic variants in genes encoding triad proteins. Abnormalities in triad structure and function resulting in disturbed excitation-contraction coupling and Ca2+ homeostasis can contribute to disease pathology. METHODS: We analysed exome and genome sequencing data from four unrelated individuals with congenital myopathy characterised by facial, ocular and bulbar involvement. We collected deep phenotypic data from the affected individuals. We analysed the RNA-sequencing (RNA-seq) data of F3-II.1 and performed gene expression outlier analysis in 129 samples. RESULTS: The four probands had a remarkably similar clinical presentation with prominent facial, ocular and bulbar features. Disease onset was in the neonatal period with hypotonia, poor feeding, cleft palate and talipes. Muscle weakness was generalised but prominent in the lower limbs with facial weakness also present. All patients had myopathic facies, bilateral ptosis, ophthalmoplegia and fatigability. Muscle biopsy on light microscopy showed type 1 myofiber predominance and ultrastructural analysis revealed slightly reduced triads, and structurally abnormal sarcoplasmic reticulum.DNA sequencing identified four unique homozygous loss-of-function variants in JPH1, encoding junctophilin-1 in the four families; one stop-gain (c.354C>A;p.Tyr118*) and three frameshift (c.373delG;p.Asp125Thrfs*30, c.1738delC;p.Leu580Trpfs*16 and c.1510delG;p. Glu504Serfs*3) variants. Muscle RNA-seq showed strong downregulation of JPH1 in the F3 proband. CONCLUSIONS: Junctophilin-1 is critical for the formation of skeletal muscle triad junctions by connecting the sarcoplasmic reticulum and T-tubules. Our findings suggest that loss of JPH1 results in a congenital myopathy with prominent facial, bulbar and ocular involvement.

3.
Nat Commun ; 15(1): 6327, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068203

RESUMO

Oculopharyngodistal myopathy (OPDM) is an inherited myopathy manifesting with ptosis, dysphagia and distal weakness. Pathologically it is characterised by rimmed vacuoles and intranuclear inclusions on muscle biopsy. In recent years CGG • CCG repeat expansion in four different genes were identified in OPDM individuals in Asian populations. None of these have been found in affected individuals of non-Asian ancestry. In this study we describe the identification of CCG expansions in ABCD3, ranging from 118 to 694 repeats, in 35 affected individuals across eight unrelated OPDM families of European ancestry. ABCD3 transcript appears upregulated in fibroblasts and skeletal muscle from OPDM individuals, suggesting a potential role of over-expression of CCG repeat containing ABCD3 transcript in progressive skeletal muscle degeneration. The study provides further evidence of the role of non-coding repeat expansions in unsolved neuromuscular diseases and strengthens the association between the CGG • CCG repeat motif and a specific pattern of muscle weakness.


Assuntos
Músculo Esquelético , Expansão das Repetições de Trinucleotídeos , População Branca , Humanos , Masculino , Feminino , Adulto , Expansão das Repetições de Trinucleotídeos/genética , Pessoa de Meia-Idade , População Branca/genética , Músculo Esquelético/patologia , Transportadores de Cassetes de Ligação de ATP/genética , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia , Linhagem , Idoso , Adulto Jovem , Fibroblastos/metabolismo , Fibroblastos/patologia , Debilidade Muscular/genética , Debilidade Muscular/patologia , Adolescente , Distrofias Musculares
4.
bioRxiv ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38765987

RESUMO

Introduction: Limb girdle muscular dystrophies (LGMDs) are a group of genetically heterogeneous autosomal conditions with some degree of phenotypic homogeneity. LGMD is defined as having onset >2 years of age with progressive proximal weakness, elevated serum creatine kinase levels and dystrophic features on muscle biopsy. Advances in massively parallel sequencing have led to a surge in genes linked to LGMD. Methods: The ClinGen Muscular Dystrophies and Myopathies gene curation expert panel (MDM GCEP, formerly Limb Girdle Muscular Dystrophy GCEP) convened to evaluate the strength of evidence supporting gene-disease relationships (GDR) using the ClinGen gene-disease clinical validity framework to evaluate 31 genes implicated in LGMD. Results: The GDR was exclusively LGMD for 17 genes, whereas an additional 14 genes were related to a broader phenotype encompassing congenital weakness. Four genes (CAPN3, COL6A1, COL6A2, COL6A3) were split into two separate disease entities, based on each displaying both dominant and recessive inheritance patterns, resulting in curation of 35 GDRs. Of these, 30 (86%) were classified as Definitive, 4 (11%) as Moderate and 1 (3%) as Limited. Two genes, POMGNT1 and DAG1, though definitively related to myopathy, currently have insufficient evidence to support a relationship specifically with LGMD. Conclusions: The expert-reviewed assertions on the clinical validity of genes implicated in LGMDs form an invaluable resource for clinicians and molecular geneticists. We encourage the global neuromuscular community to publish case-level data that help clarify disputed or novel LGMD associations.

5.
medRxiv ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38370827

RESUMO

Background: Weakness of facial, ocular, and axial muscles is a common clinical presentation in congenital myopathies caused by pathogenic variants in genes encoding triad proteins. Abnormalities in triad structure and function resulting in disturbed excitation-contraction coupling and Ca 2+ homeostasis can contribute to disease pathology. Methods: We analysed exome and genome sequencing data from three unrelated individuals with congenital myopathy characterised by striking facial, ocular, and bulbar involvement. We collected deep phenotypic data from the affected individuals. We analysed the RNA-seq data of one proband and performed gene expression outlier analysis in 129 samples. Results: The three probands had remarkably similar clinical presentation with prominent facial, ocular, and bulbar features. Disease onset was in the neonatal period with hypotonia, poor feeding, cleft palate and talipes. Muscle weakness was generalised but most prominent in the lower limbs with facial weakness also present. All patients had myopathic facies, bilateral ptosis, ophthalmoplegia and fatiguability. While muscle biopsy on light microscopy did not show any obvious morphological abnormalities, ultrastructural analysis showed slightly reduced triads, and structurally abnormal sarcoplasmic reticulum. DNA sequencing identified three unique homozygous loss of function variants in JPH1 , encoding junctophilin-1 in the three families; a stop-gain (c.354C>A; p.Tyr118*) and two frameshift (c.373del p.Asp125Thrfs*30 and c.1738del; p.Leu580Trpfs*16) variants. Muscle RNA-seq showed strong downregulation of JPH1 in the F3 proband. Conclusions: Junctophilin-1 is critical to the formation of skeletal muscle triad junctions by connecting the sarcoplasmic reticulum and T-tubules. Our findings suggest that loss of JPH1 results in a congenital myopathy with prominent facial, bulbar and ocular involvement. Key message: This study identified novel homozygous loss-of-function variants in the JPH1 gene, linking them to a unique form of congenital myopathy characterised by severe facial and ocular symptoms. Our research sheds light on the critical impact on junctophilin-1 function in skeletal muscle triad junction formation and the consequences of its disruption resulting in a myopathic phenotype. What is already known on this topic: Previous studies have shown that pathogenic variants in genes encoding triad proteins lead to various myopathic phenotypes, with clinical presentations often involving muscle weakness and myopathic facies. The triad structure is essential for excitation-contraction (EC) coupling and calcium homeostasis and is a key element in muscle physiology. What this study adds and how this study might affect research practice or policy: This study establishes that homozygous loss-of-function mutations in JPH1 cause a congenital myopathy predominantly affecting facial and ocular muscles. This study also provides clinical insights that may aid the clinicians in diagnosing similar genetically unresolved cases.

6.
J Neuromuscul Dis ; 10(5): 977-984, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37393515

RESUMO

BACKGROUND: Pathogenic variants in the TPM3 gene, encoding slow skeletal muscle α-tropomyosin account for less than 5% of nemaline myopathy cases. Dominantly inherited or de novo missense variants in TPM3 are more common than recessive loss-of-function variants. The recessive variants reported to date seem to affect either the 5' or the 3' end of the skeletal muscle-specific TPM3 transcript. OBJECTIVES: The aim of the study was to identify the disease-causing gene and variants in a Finnish patient with an unusual form of nemaline myopathy. METHODS: The genetic analyses included Sanger sequencing, whole-exome sequencing, targeted array-CGH, and linked-read whole genome sequencing. RNA sequencing was done on total RNA extracted from cultured myoblasts and myotubes of the patient and controls. TPM3 protein expression was assessed by Western blot analysis. The diagnostic muscle biopsy was analyzed by routine histopathological methods. RESULTS: The patient had poor head control and failure to thrive, but no hypomimia, and his upper limbs were clearly weaker than his lower limbs, features which in combination with the histopathology suggested TPM3-caused nemaline myopathy. Muscle histopathology showed increased fiber size variation and numerous nemaline bodies predominantly in small type 1 fibers. The patient was found to be compound heterozygous for two splice-site variants in intron 1a of TPM3: NM_152263.4:c.117+2_5delTAGG, deleting the donor splice site of intron 1a, and NM_152263.4:c.117 + 164 C>T, which activates an acceptor splice site preceding a non-coding exon in intron 1a. RNA sequencing revealed inclusion of intron 1a and the non-coding exon in the transcripts, resulting in early premature stop codons. Western blot using patient myoblasts revealed markedly reduced levels of the TPM3 protein. CONCLUSIONS: Novel biallelic splice-site variants were shown to markedly reduce TPM3 protein expression. The effects of the variants on splicing were readily revealed by RNA sequencing, demonstrating the power of the method.


Assuntos
Miopatias da Nemalina , Humanos , Miopatias da Nemalina/genética , Sequenciamento do Exoma , Tropomiosina/genética , Tropomiosina/metabolismo , Músculo Esquelético/patologia , Análise de Sequência de RNA
7.
Hum Mol Genet ; 32(21): 3029-3039, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37070754

RESUMO

Recessive mutations in the DNAJB2 gene, encoding the J-domain co-chaperones DNAJB2a and DNAJB2b, have previously been reported as the genetic cause of progressive peripheral neuropathies, rarely involving pyramidal signs, parkinsonism and myopathy. We describe here a family with the first dominantly acting DNAJB2 mutation resulting in a late-onset neuromyopathy phenotype. The c.832 T > G p.(*278Glyext*83) mutation abolishes the stop codon of the DNAJB2a isoform resulting in a C-terminal extension of the protein, with no direct effect predicted on the DNAJB2b isoform of the protein. Analysis of the muscle biopsy showed reduction of both protein isoforms. In functional studies, the mutant protein mislocalized to the endoplasmic reticulum due to a transmembrane helix in the C-terminal extension. The mutant protein underwent rapid proteasomal degradation and also increased the turnover of co-expressed wild-type DNAJB2a, potentially explaining the reduced protein amount in the patient muscle tissue. In line with this dominant negative effect, both wild-type and mutant DNAJB2a were shown to form polydisperse oligomers.


Assuntos
Doenças Neuromusculares , Doenças do Sistema Nervoso Periférico , Humanos , Chaperonas Moleculares/genética , Mutação , Isoformas de Proteínas/genética , Proteínas Mutantes/genética , Proteínas de Choque Térmico HSP40/genética
8.
Neurol Genet ; 7(6): e632, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34722876

RESUMO

BACKGROUND AND OBJECTIVES: To determine the genetic cause of the disease in the previously reported family with adult-onset autosomal dominant distal myopathy (myopathy, distal, 3; MPD3). METHODS: Continued clinical evaluation including muscle MRI and muscle pathology. A linkage analysis with single nucleotide polymorphism arrays and genome sequencing were used to identify the genetic defect, which was verified by Sanger sequencing. RNA sequencing was used to investigate the transcriptional effects of the identified genetic defect. RESULTS: Small hand muscles (intrinsic, thenar, and hypothenar) were first involved with spread to the lower legs and later proximal muscles. Dystrophic changes with rimmed vacuoles and cytoplasmic inclusions were observed in muscle biopsies at advanced stage. A single nucleotide polymorphism array confirmed the previous microsatellite-based linkage to 8p22-q11 and 12q13-q22. Genome sequencing of three affected family members combined with structural variant calling revealed a small heterozygous deletion of 160 base pairs spanning the second last exon 10 of the heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) gene, which is in the linked region on chromosome 12. Segregation of the mutation with the disease was confirmed by Sanger sequencing. RNA sequencing showed that the mutant allele produces a shorter mutant mRNA transcript compared with the wild-type allele. Immunofluorescence studies on muscle biopsies revealed small p62 and larger TDP-43 inclusions. DISCUSSION: A small exon 10 deletion in the gene HNRNPA1 was identified as the cause of MPD3 in this family. The new HNRNPA1-related phenotype, upper limb presenting distal myopathy, was thus confirmed, and the family displays the complexities of gene identification.

9.
Neurol Genet ; 7(5): e619, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34386585

RESUMO

BACKGROUND AND OBJECTIVES: To clinically, genetically, and histopathologically characterize patients presenting with an unusual combination of distal myopathy and facial weakness, without involvement of upper limb or shoulder girdle muscles. METHODS: Two families with a novel form of actininopathy were identified. Patients had been followed up over 10 years. Their molecular genetic diagnosis was not clear after extensive investigations, including analysis of candidate genes and FSHD1-related D4Z4 repeats. RESULTS: Patients shared a similar clinical phenotype and a common pattern of muscle involvement. They presented with a very slowly progressive myopathy involving anterior lower leg and facial muscles. Muscle MRI finding showed complete fat replacement of anterolateral compartment muscles of the lower legs with variable involvement of soleus and gastrocnemius but sparing thigh muscles. Muscle biopsy showed internalized nuclei, myofibrillar disorganization, and rimmed vacuoles. High-throughput sequencing identified in each proband a heterozygous single nucleotide deletion (c.2558del and c.2567del) in the last exon of the ACTN2 gene. The deletions are predicted to lead to a novel but unstructured slightly extended C-terminal amino acid sequence. DISCUSSION: Our findings indicate an unusual form of actininopathy with specific molecular and clinical features. Actininopathy should be considered in the differential diagnosis of distal myopathy combined with facial weakness.

10.
J Neuromuscul Dis ; 7(4): 477-481, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32597815

RESUMO

Although DNA-sequencing is the most effective procedure to achieve a molecular diagnosis in genetic diseases, complementary RNA analyses are often required.Reverse-Transcription polymerase chain reaction (RT-PCR) is still a valuable option when the clinical phenotype and/or available DNA-test results address the diagnosis toward a gene of interest or when the splicing effect of a single variant needs to be assessed.We use Single-Molecule Real-Time sequencing to detect and characterize splicing defects and single nucleotide variants in well-known disease genes (DMD, NF1, TTN). After proper optimization, the procedure could be used in the diagnostic setting, simplifying the workflow of cDNA analysis.


Assuntos
DNA Complementar , Testes Genéticos/métodos , Polimorfismo de Nucleotídeo Único , Splicing de RNA , Análise de Sequência de DNA/métodos , Conectina/genética , Distrofina/genética , Humanos , Neurofibromina 1/genética
11.
J Neurol ; 266(10): 2524-2534, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31267206

RESUMO

Autosomal dominant limb girdle muscular dystrophy D3 HNRNPDL-related is a rare dominant myopathy caused by mutations in HNRNPDL. Only three unrelated families have been described worldwide, a Brazilian and a Chinese carrying the mutation c.1132G>A p.(Asp378Asn), and one Uruguayan with the mutation c.1132G>C p. (Asp378His), both mutations occurring in the same codon. The present study enlarges the clinical, morphological and muscle MRI spectrum of AD-HNRNPDL-related myopathies demonstrating the significant particularities of the disease. We describe two new unrelated Argentinean families, carrying the previously reported c.1132G>C p.(Asp378His) HNRNPDL mutation. There was a wide phenotypic spectrum including oligo-symptomatic cases, pure limb girdle muscle involvement or distal lower limb muscle weakness. Scapular winging was the most common finding, observed in all patients. Muscle MRIs of the thigh, at different stages of the disease, showed particular involvement of adductor magnus and vastus besides a constant preservation of the rectus femoris and the adductor longus muscles, defining a novel MRI pattern. Muscle biopsy findings were characterized by the presence of numerous rimmed vacuoles, cytoplasmic bodies, and abundant autophagic material at the histochemistry and ultrastructural levels. HNRNPDL-related LGMD D3 results in a wide range of clinical phenotypes from the classic proximal form of LGMD to a more distal phenotype. Thigh MRI suggests a specific pattern. Codon 378 of HNRNPDL gene can be considered a mutation hotspot for HNRNPDL-related myopathy. Pathologically, the disease can be classified among the autophagic rimmed vacuolar myopathies as with the other multisystem proteinopathies.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo D/genética , Distrofia Muscular do Cíngulo dos Membros , Idoso , Argentina , Feminino , Ribonucleoproteína Nuclear Heterogênea D0 , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/patologia , Distrofia Muscular do Cíngulo dos Membros/fisiopatologia , Mutação , Linhagem , Fenótipo
12.
Neurology ; 92(14): e1600-e1609, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30842289

RESUMO

OBJECTIVE: To identify the genetic defect causing a distal calf myopathy with cores. METHODS: Families with a genetically undetermined calf-predominant myopathy underwent detailed clinical evaluation, including EMG/nerve conduction studies, muscle biopsy, laboratory investigations, and muscle MRI. Next-generation sequencing and targeted Sanger sequencing were used to identify the causative genetic defect in each family. RESULTS: A novel deletion-insertion mutation in ryanodine receptor 1 (RYR1) was found in the proband of the index family and segregated with the disease in 6 affected relatives. Subsequently, we found 2 more families with a similar calf-predominant myopathy segregating with unique RYR1-mutated alleles. All patients showed a very slowly progressive myopathy without episodes of malignant hyperthermia or rhabdomyolysis. Muscle biopsy showed cores or core-like changes in all families. CONCLUSIONS: Our findings expand the spectrum of RYR1-related disorders to include a calf-predominant myopathy with core pathology and autosomal dominant inheritance. Two families had unique and previously unreported RYR1 mutations, while affected persons in the third family carried 2 previously known mutations in the same dominant allele.


Assuntos
Miopatias Distais/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Adolescente , Adulto , Idoso , Criança , Creatina Quinase/metabolismo , Miopatias Distais/metabolismo , Miopatias Distais/patologia , Miopatias Distais/fisiopatologia , Feminino , Humanos , Mutação INDEL , Perna (Membro) , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Linhagem , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA