Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 12(10)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092056

RESUMO

Dietary fibers are fermented by gut bacteria into the major short chain fatty acids (SCFAs) acetate, propionate, and butyrate. Generally, fiber-rich diets are believed to improve metabolic health. However, recent studies suggest that long-term supplementation with fibers causes changes in hepatic bile acid metabolism, hepatocyte damage, and hepatocellular cancer in dysbiotic mice. Alterations in hepatic bile acid metabolism have also been reported after cold-induced activation of brown adipose tissue. Here, we aim to investigate the effects of short-term dietary inulin supplementation on liver cholesterol and bile acid metabolism in control and cold housed specific pathogen free wild type (WT) mice. We found that short-term inulin feeding lowered plasma cholesterol levels and provoked cholestasis and mild liver damage in WT mice. Of note, inulin feeding caused marked perturbations in bile acid metabolism, which were aggravated by cold treatment. Our studies indicate that even relatively short periods of inulin consumption in mice with an intact gut microbiome have detrimental effects on liver metabolism and function.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Inulina/efeitos adversos , Fígado/efeitos dos fármacos , Animais , Ácidos e Sais Biliares/sangue , Bilirrubina/sangue , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Colesterol/análise , Colesterol/sangue , Suplementos Nutricionais , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Abrigo para Animais , Inulina/administração & dosagem , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Temperatura
2.
Gut ; 69(4): 665-672, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31243055

RESUMO

BACKGROUND: Patients with primary sclerosing cholangitis (PSC) display an altered colonic microbiome compared with healthy controls. However, little is known on the bile duct microbiome and its interplay with bile acid metabolism in PSC. METHODS: Patients with PSC (n=43) and controls without sclerosing cholangitis (n=22) requiring endoscopic retrograde cholangiography were included prospectively. Leading indications in controls were sporadic choledocholithiasis and papillary adenoma. A total of 260 biospecimens were collected from the oral cavity, duodenal fluid and mucosa and ductal bile. Microbiomes of the upper alimentary tract and ductal bile were profiled by sequencing the 16S-rRNA-encoding gene (V1-V2). Bile fluid bile acid composition was measured by high-performance liquid chromatography mass spectrometry and validated in an external cohort (n=20). RESULTS: The bile fluid harboured a diverse microbiome that was distinct from the oral cavity, the duodenal fluid and duodenal mucosa communities. The upper alimentary tract microbiome differed between PSC patients and controls. However, the strongest differences between PSC patients and controls were observed in the ductal bile fluid, including reduced biodiversity (Shannon entropy, p=0.0127) and increase of pathogen Enterococcus faecalis (FDR=4.18×10-5) in PSC. Enterococcus abundance in ductal bile was strongly correlated with concentration of the noxious secondary bile acid taurolithocholic acid (r=0.60, p=0.0021). CONCLUSION: PSC is characterised by an altered microbiome of the upper alimentary tract and bile ducts. Biliary dysbiosis is linked with increased concentrations of the proinflammatory and potentially cancerogenic agent taurolithocholic acid.


Assuntos
Bile/microbiologia , Colangite Esclerosante/microbiologia , Disbiose/complicações , Microbiota , Adulto , Idoso , Idoso de 80 Anos ou mais , Ductos Biliares/microbiologia , Estudos de Casos e Controles , Estudos de Coortes , Duodeno/microbiologia , Disbiose/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mucosa Bucal/microbiologia , Adulto Jovem
3.
J Hepatol ; 71(4): 783-792, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31207266

RESUMO

BACKGROUND & AIMS: T cells are central mediators of liver inflammation and represent potential treatment targets in cholestatic liver disease. Whereas emerging evidence shows that bile acids (BAs) affect T cell function, the role of T cells for the regulation of BA metabolism is unknown. In order to understand this interplay, we investigated the influence of T cells on BA metabolism in a novel mouse model of cholangitis. METHODS: Mdr2-/- mice were crossed with transgenic K14-OVAp mice, which express an MHC class I restricted ovalbumin peptide on biliary epithelial cells (Mdr2-/-xK14-OVAp). T cell-mediated cholangitis was induced by the adoptive transfer of antigen-specific CD8+ T cells. BA levels were quantified using a targeted liquid chromatography-mass spectrometry-based approach. RESULTS: T cell-induced cholangitis resulted in reduced levels of unconjugated BAs in the liver and significantly increased serum and hepatic levels of conjugated BAs. Genes responsible for BA synthesis and uptake were downregulated and expression of the bile salt export pump was increased. The transferred antigen-specific CD8+ T cells alone were able to induce these changes, as demonstrated using Mdr2-/-xK14-OVAp recipient mice on the Rag1-/- background. Mechanistically, we showed by depletion experiments that alterations in BA metabolism were partly mediated by the proinflammatory cytokines TNF and IFN-γ in an FXR-dependent manner, a process that in vitro required cell contact between T cells and hepatocytes. CONCLUSION: Whereas it is known that BA metabolism is dysregulated in sepsis and related conditions, we have shown that T cells are able to control the synthesis and metabolism of BAs, a process which depends on TNF and IFN-γ. Understanding the effect of lymphocytes on BA metabolism will help in the design of combined treatment strategies for cholestatic liver diseases. LAY SUMMARY: Dysregulation of bile acid metabolism and T cells can contribute to the development of cholangiopathies. Before targeting T cells for the treatment of cholangiopathies, it should be determined whether they exert protective effects on bile acid metabolism. Herein, we demonstrate that T cell-induced cholangitis resulted in decreased levels of harmful unconjugated bile acids. T cells were able to directly control synthesis and metabolism of bile acids, a process which was dependent on the proinflammatory cytokines TNF and IFN-γ. Understanding the effect of lymphocytes on bile acid metabolism will help in the design of combined treatment strategies for cholestatic liver diseases.


Assuntos
Ácidos e Sais Biliares , Colangite , Interferon gama/imunologia , Linfócitos T , Fator de Necrose Tumoral alfa/imunologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Ácidos e Sais Biliares/biossíntese , Ácidos e Sais Biliares/metabolismo , Vias Biossintéticas/imunologia , Colangite/imunologia , Colangite/metabolismo , Colangite/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Animais , Serpinas/genética , Linfócitos T/metabolismo , Linfócitos T/patologia , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
4.
Nat Med ; 23(7): 839-849, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28604703

RESUMO

Adaptive thermogenesis is an energy-demanding process that is mediated by cold-activated beige and brown adipocytes, and it entails increased uptake of carbohydrates, as well as lipoprotein-derived triglycerides and cholesterol, into these thermogenic cells. Here we report that cold exposure in mice triggers a metabolic program that orchestrates lipoprotein processing in brown adipose tissue (BAT) and hepatic conversion of cholesterol to bile acids via the alternative synthesis pathway. This process is dependent on hepatic induction of cytochrome P450, family 7, subfamily b, polypeptide 1 (CYP7B1) and results in increased plasma levels, as well as fecal excretion, of bile acids that is accompanied by distinct changes in gut microbiota and increased heat production. Genetic and pharmacological interventions that targeted the synthesis and biliary excretion of bile acids prevented the rise in fecal bile acid excretion, changed the bacterial composition of the gut and modulated thermogenic responses. These results identify bile acids as important metabolic effectors under conditions of sustained BAT activation and highlight the relevance of cholesterol metabolism by the host for diet-induced changes of the gut microbiota and energy metabolism.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Temperatura Baixa , Microbioma Gastrointestinal , Termogênese , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Tecido Adiposo Marrom/metabolismo , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Western Blotting , Calorimetria Indireta , Estudos de Casos e Controles , Família 7 do Citocromo P450/genética , Família 7 do Citocromo P450/metabolismo , Microbioma Gastrointestinal/genética , Perfilação da Expressão Gênica , Humanos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Obesidade , RNA Ribossômico 16S/genética , Receptores de LDL/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
5.
Am J Physiol Endocrinol Metab ; 309(12): E968-80, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26487005

RESUMO

In humans and rodents, risk of metabolic syndrome is sexually dimorphic, with an increased incidence in males. Additionally, the protective role of female gonadal hormones is ostensible, as prevalence of type 2 diabetes mellitus (T2DM) increases after menopause. Here, we investigated the influence of estrogen (E2) on the onset of T2DM in female New Zealand obese (NZO) mice. Diabetes prevalence (defined as blood glucose levels >16.6 mmol/l) of NZO females on high-fat diet (60 kcal% fat) in week 22 was 43%. This was markedly dependent on liver fat content in week 10, as detected by computed tomography. Only mice with a liver fat content >9% in week 10 plus glucose levels >10 mmol/l in week 9 developed hyperglycemia by week 22. In addition, at 11 wk, diacylglycerols were elevated in livers of diabetes-prone mice compared with controls. Hepatic expression profiles obtained from diabetes-prone and -resistant mice at 11 wk revealed increased abundance of two transcripts in diabetes-prone mice: Mogat1, which catalyzes the synthesis of diacylglycerols from monoacylglycerol and fatty acyl-CoA, and the fatty acid transporter Cd36. E2 treatment of diabetes-prone mice for 10 wk prevented any further increase in liver fat content and reduced diacylglycerols and the abundance of Mogat1 and Cd36, leading to a reduction of diabetes prevalence and an improved glucose tolerance compared with untreated mice. Our data indicate that early elevation of hepatic Cd36 and Mogat1 associates with increased production and accumulation of triglycerides and diacylglycerols, presumably resulting in reduced hepatic insulin sensitivity and leading to later onset of T2DM.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Estrogênios/farmacologia , Ácidos Graxos/metabolismo , Gordura Intra-Abdominal/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Animais , Feminino , Gordura Intra-Abdominal/efeitos dos fármacos , Fígado/efeitos dos fármacos , Prevalência , Ratos
6.
Biochim Biophys Acta ; 1851(5): 566-76, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25645620

RESUMO

Caloric restriction and intermittent fasting are known to improve glucose homeostasis and insulin resistance in several species including humans. The aim of this study was to unravel potential mechanisms by which these interventions improve insulin sensitivity and protect from type 2 diabetes. Diabetes-susceptible New Zealand Obese mice were either 10% calorie restricted (CR) or fasted every other day (IF), and compared to ad libitum (AL) fed control mice. AL mice showed a diabetes prevalence of 43%, whereas mice under CR and IF were completely protected against hyperglycemia. Proteomic analysis of hepatic lipid droplets revealed significantly higher levels of PSMD9 (co-activator Bridge-1), MIF (macrophage migration inhibitor factor), TCEB2 (transcription elongation factor B (SIII), polypeptide 2), ACY1 (aminoacylase 1) and FABP5 (fatty acid binding protein 5), and a marked reduction of GSTA3 (glutathione S-transferase alpha 3) in samples of CR and IF mice. In addition, accumulation of diacylglycerols (DAGs) was significantly reduced in livers of IF mice (P=0.045) while CR mice showed a similar tendency (P=0.062). In particular, 9 DAG species were significantly reduced in response to IF, of which DAG-40:4 and DAG-40:7 also showed significant effects after CR. This was associated with a decreased PKCε activation and might explain the improved insulin sensitivity. In conclusion, our data indicate that protection against diabetes upon caloric restriction and intermittent fasting associates with a modulation of lipid droplet protein composition and reduction of intracellular DAG species.


Assuntos
Restrição Calórica , Diabetes Mellitus Tipo 2/prevenção & controle , Diglicerídeos/metabolismo , Jejum , Privação de Alimentos , Gotículas Lipídicas/metabolismo , Fígado/metabolismo , Obesidade/dietoterapia , Proteoma/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/etiologia , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Insulina/sangue , Resistência à Insulina , Masculino , Camundongos Obesos , Músculo Esquelético/metabolismo , Obesidade/sangue , Obesidade/complicações , Oxirredução , Proteína Quinase C-épsilon/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA