Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 373
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273398

RESUMO

Inflammation with expression of interleukin 6 (IL-6) in the central nervous system (CNS) occurs in several neurodegenerative/neuroinflammatory conditions and may cause neurochemical changes to endogenous neuroprotective systems. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are two neuropeptides with well-established protective and anti-inflammatory properties. Yet, whether PACAP and VIP levels are altered in mice with CNS-restricted, astrocyte-targeted production of IL-6 (GFAP-IL6) remains unknown. In this study, PACAP/VIP levels were assessed in the brain of GFAP-IL6 mice. In addition, we utilised bi-genic GFAP-IL6 mice carrying the human sgp130-Fc transgene (termed GFAP-IL6/sgp130Fc mice) to determine whether trans-signalling inhibition rescued PACAP/VIP changes in the CNS. Transcripts and protein levels of PACAP and VIP, as well as their receptors PAC1, VPAC1 and VPAC2, were significantly increased in the cerebrum and cerebellum of GFAP-IL6 mice vs. wild type (WT) littermates. These results were paralleled by a robust activation of the JAK/STAT3, NF-κB and ERK1/2MAPK pathways in GFAP-IL6 mice. In contrast, co-expression of sgp130Fc in GFAP-IL6/sgp130Fc mice reduced VIP expression and activation of STAT3 and NF-κB pathways, but it failed to rescue PACAP, PACAP/VIP receptors and Erk1/2MAPK phosphorylation. We conclude that forced expression of IL-6 in astrocytes induces the activation of the PACAP/VIP neuropeptide system in the brain, which is only partly modulated upon IL-6 trans-signalling inhibition. Increased expression of PACAP/VIP neuropeptides and receptors may represent a homeostatic response of the CNS to an uncontrolled IL-6 synthesis and its neuroinflammatory consequences.


Assuntos
Encéfalo , Interleucina-6 , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Transdução de Sinais , Peptídeo Intestinal Vasoativo , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Camundongos , Peptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/genética , Encéfalo/metabolismo , Astrócitos/metabolismo , Humanos , Camundongos Transgênicos , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Sistema Nervoso Central/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Masculino , Camundongos Endogâmicos C57BL
2.
Eur J Haematol ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210558

RESUMO

BACKGROUND: Idiopathic multicentric Castleman disease (iMCD) is a rare inflammatory disorder mediated by excessive proinflammatory cytokine signaling, most notably by interleukin 6 (IL-6). IL-6-induced extramedullary hematopoiesis (EMH) has been reported in murine models of iMCD. Herein we present four cases of iMCD with EMH in humans. CASE SERIES: The index case is a 24-year-old white woman who presented with pancytopenia, hepatosplenomegaly, and diffuse lymphadenopathy (LAD) with EMH in core lymph node biopsies. We then searched ACCELERATE, a Castleman disease (CD) natural history registry, and identified three additional CD cases with EMH reported in biopsies: A 23-year-old Asian man with fatigue, edema, LAD, and splenomegaly; a 20-year-old white man with fever, dyspnea, LAD, and hepatosplenomegaly; and a 50-year-old white man with constitutional symptoms, LAD, and myelodysplastic syndrome in bone marrow with a KRAS mutation. RESULTS: All four patients presented with thrombocytopenia and fever and/or markedly elevated C-reactive protein. Patient 1 had iMCD-NOS (not otherwise specified) with severe thrombocytopenia, reticulin fibrosis in bone marrow, small volume LAD and organomegaly but no anasarca. The other three patients had iMCD-TAFRO (thrombocytopenia, anasarca, reticulin fibrosis, renal dysfunction, organomegaly). Two had mixed CD and two had hypervascular CD in lymph nodes. All four had bone marrow hypercellularity and megakaryocyte hyperplasia and two had reticulin fibrosis. CONCLUSIONS: This case series demonstrates that EMH can be seen in CD, particularly in iMCD-TAFRO. Given the similarity of this finding to previous murine models of IL-6-induced marrow and lymph node changes we hypothesize that this is an IL-6-mediated phenomenon.

3.
EBioMedicine ; 103: 105132, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677182

RESUMO

BACKGROUND: SARS-CoV-2 infection is considered as a relapsing inflammatory process with a dysregulation of IL-6 signalling. Classic IL-6 signalling is thought to represent a defence mechanism against pathogens. In contrast, IL-6 trans-signalling has pro-inflammatory effects. In severe COVID-19, therapeutic strategies have focused on global inhibition of IL-6, with controversial results. We hypothesized that specific blockade of IL-6 trans-signalling could inhibit inflammatory response preserving the host defence activity inherent to IL-6 classic signalling. METHODS: To test the role of the specific IL-6 trans-signalling inhibition by sgp130Fc in short- and long-term consequences of COVID-19, we used the established K18-hACE2 transgenic mouse model. Histological as well as immunohistochemical analysis, and pro-inflammatory marker profiling were performed. To investigate IL-6 trans-signalling in human cells we used primary lung microvascular endothelial cells and fibroblasts in the presence/absence of sgp130Fc. FINDINGS: We report that targeting IL-6 trans-signalling by sgp130Fc attenuated SARS-CoV-2-related clinical symptoms and mortality. In surviving mice, the treatment caused a significant decrease in lung damage. In vitro, IL-6 trans-signalling induced strong and persisting JAK1/STAT3 activation in endothelial cells and lung fibroblasts with proinflammatory effects, which were attenuated by sgp130Fc. Our data also suggest that in those cells with scant amounts of IL-6R, the induction of gp130 and IL-6 by IL-6:sIL-6R complex sustains IL-6 trans-signalling. INTERPRETATION: IL-6 trans-signalling fosters progression of COVID-19, and suggests that specific blockade of this signalling mode could offer a promising alternative to mitigate both short- and long-term consequences without affecting the beneficial effects of IL-6 classic signalling. These results have implications for the development of new therapies of lung injury and endotheliopathy in COVID-19. FUNDING: The project was supported by ISCIII, Spain (COV-20/00792 to MB, PI23/01351 to MARH) and the European Commission-Next generation EU (European Union) (Regulation EU 2020/2094), through CSIC's Global Health Platform (PTI Salud Global, SGL2103029 to MB). PID2019-110587RB-I00 (MB) supported by MICIN/AEI/10.13039/501100011033/and PID2022-143034OB-I00 (MB) by MICIN/AEI/10.13039/501100011033/FEDER. MAR-H acknowledges support from ISCIII, Spain and the European Commission-Next generation EU (European Union), through CSIC's Global Health PTI.


Assuntos
COVID-19 , Receptor gp130 de Citocina , Interleucina-6 , Camundongos Transgênicos , SARS-CoV-2 , Transdução de Sinais , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Infecções por Coronavirus/patologia , COVID-19/metabolismo , Tratamento Farmacológico da COVID-19 , Receptor gp130 de Citocina/metabolismo , Receptor gp130 de Citocina/antagonistas & inibidores , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Interleucina-6/metabolismo , Pulmão/patologia , Pulmão/virologia , Pulmão/metabolismo , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Pneumonia Viral/patologia , Pneumonia Viral/metabolismo , Receptores de Interleucina-6/metabolismo , Receptores de Interleucina-6/antagonistas & inibidores , Proteínas Recombinantes de Fusão/farmacologia , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos
4.
Med Klin Intensivmed Notfmed ; 119(Suppl 1): 1-50, 2024 May.
Artigo em Alemão | MEDLINE | ID: mdl-38625382

RESUMO

In Germany, physicians qualify for emergency medicine by combining a specialty medical training-e.g. internal medicine-with advanced training in emergency medicine according to the statutes of the State Chambers of Physicians largely based upon the Guideline Regulations on Specialty Training of the German Medical Association. Internal medicine and their associated subspecialities represent an important column of emergency medicine. For the internal medicine aspects of emergency medicine, this curriculum presents an overview of knowledge, skills (competence levels I-III) as well as behaviours and attitudes allowing for the best treatment of patients. These include general aspects (structure and process quality, primary diagnostics and therapy as well as indication for subsequent treatment; resuscitation room management; diagnostics and monitoring; general therapeutic measures; hygiene measures; and pharmacotherapy) and also specific aspects concerning angiology, endocrinology, diabetology and metabolism, gastroenterology, geriatric medicine, hematology and oncology, infectiology, cardiology, nephrology, palliative care, pneumology, rheumatology and toxicology. Publications focussing on contents of advanced training are quoted in order to support this concept. The curriculum has primarily been written for internists for their advanced emergency training, but it may generally show practising emergency physicians the broad spectrum of internal medicine diseases or comorbidities presented by patients attending the emergency department.


Assuntos
Currículo , Medicina de Emergência , Serviço Hospitalar de Emergência , Medicina Interna , Medicina Interna/educação , Humanos , Alemanha , Medicina de Emergência/educação , Competência Clínica , Educação de Pós-Graduação em Medicina
5.
Respir Res ; 24(1): 308, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062491

RESUMO

BACKGROUND: Asthma is stratified into type 2-high and type 2-low inflammatory phenotypes. Limited success has been achieved in developing drugs that target type 2-low inflammation. Previous studies have linked IL-6 signaling to severe asthma. IL-6 cooperates with soluble-IL-6Rα to activate cell signaling in airway epithelium. OBJECTIVE: We sought to study the role of sIL-6Rα amplified IL-6 signaling in airway epithelium and to develop an IL-6+ sIL-6Rα gene signature that may be used to select asthma patients who potentially respond to anti-IL-6 therapy. METHODS: Human airway epithelial cells were stimulated with combinations of IL-6, sIL-6Rα, and inhibitors, sgp130 (Olamkicept), and anti-IL-6R (Tocilizumab), to assess effects on pathway activation, epithelial barrier integrity, and gene expression. A gene signature was generated to identify IL-6 high patients using bronchial biopsies and nasal brushes. RESULTS: Soluble-IL-6Rα amplified the activation of the IL-6 pathway, shown by the increase of STAT3 phosphorylation and stronger gene induction in airway epithelial cells compared to IL-6 alone. Olamkicept and Tocilizumab inhibited the effect of IL-6 + sIL-6Rα on gene expression. We developed an IL-6 + sIL-6Rα gene signature and observed enrichment of this signature in bronchial biopsies but not nasal brushes from asthma patients compared to healthy controls. An IL-6 + sIL-6Rα gene signature score was associated with lower levels of sputum eosinophils in asthma. CONCLUSION: sIL-6Rα amplifies IL-6 signaling in bronchial epithelial cells. Higher local airway IL-6 + sIL-6Rα signaling is observed in asthma patients with low sputum eosinophils.


Assuntos
Asma , Interleucina-6 , Humanos , Asma/diagnóstico , Asma/tratamento farmacológico , Asma/genética , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Inflamação , Interleucina-6/metabolismo , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Transdução de Sinais
6.
Sci Adv ; 9(37): eadh0831, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703359

RESUMO

The incidence of hepatocellular carcinoma (HCC) is rapidly rising largely because of increased obesity leading to nonalcoholic steatohepatitis (NASH), a known HCC risk factor. There are no approved treatments to treat NASH. Here, we first used single-nucleus RNA sequencing to characterize a mouse model that mimics human NASH-driven HCC, the MUP-uPA mouse fed a high-fat diet. Activation of endoplasmic reticulum (ER) stress and inflammation was observed in a subset of hepatocytes that was enriched in mice that progress to HCC. We next treated MUP-uPA mice with the ER stress inhibitor BGP-15 and soluble gp130Fc, a drug that blocks inflammation by preventing interleukin-6 trans-signaling. Both drugs have progressed to phase 2/3 human clinical trials for other indications. We show that this combined therapy reversed NASH and reduced NASH-driven HCC. Our data suggest that these drugs could provide a potential therapy for NASH progression to HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/prevenção & controle , Hepatócitos , Inflamação/tratamento farmacológico
7.
Mol Cancer ; 22(1): 133, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573301

RESUMO

Prostate cancer (PCa) is a common and fatal type of cancer in men. Metastatic PCa (mPCa) is a major factor contributing to its lethality, although the mechanisms remain poorly understood. PTEN is one of the most frequently deleted genes in mPCa. Here we show a frequent genomic co-deletion of PTEN and STAT3 in liquid biopsies of patients with mPCa. Loss of Stat3 in a Pten-null mouse prostate model leads to a reduction of LKB1/pAMPK with simultaneous activation of mTOR/CREB, resulting in metastatic disease. However, constitutive activation of Stat3 led to high LKB1/pAMPK levels and suppressed mTORC1/CREB pathway, preventing mPCa development. Metformin, one of the most widely prescribed therapeutics against type 2 diabetes, inhibits mTORC1 in liver and requires LKB1 to mediate glucose homeostasis. We find that metformin treatment of STAT3/AR-expressing PCa xenografts resulted in significantly reduced tumor growth accompanied by diminished mTORC1/CREB, AR and PSA levels. PCa xenografts with deletion of STAT3/AR nearly completely abrogated mTORC1/CREB inhibition mediated by metformin. Moreover, metformin treatment of PCa patients with high Gleason grade and type 2 diabetes resulted in undetectable mTORC1 levels and upregulated STAT3 expression. Furthermore, PCa patients with high CREB expression have worse clinical outcomes and a significantly increased risk of PCa relapse and metastatic recurrence. In summary, we have shown that STAT3 controls mPCa via LKB1/pAMPK/mTORC1/CREB signaling, which we have identified as a promising novel downstream target for the treatment of lethal mPCa.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metformina/farmacologia , Recidiva Local de Neoplasia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
8.
Z Gerontol Geriatr ; 56(5): 382-387, 2023 Aug.
Artigo em Alemão | MEDLINE | ID: mdl-37394541

RESUMO

The timely integration of palliative medicine is an important component in the treatment of various advanced diseases. While a German S­3-guideline on palliative medicine exists for patients with incurable cancer, a recommendation for non-oncological patients and especially for palliative patients presenting in the emergency department or intensive care unit is missing to date. Based on the present consensus paper, the palliative care aspects of the respective medical disciplines are addressed. The timely integration of palliative care aims to improve quality of life and symptom control in clinical acute and emergency medicine as well as intensive care.


Assuntos
Medicina de Emergência , Qualidade de Vida , Humanos , Consenso , Cuidados Críticos , Cuidados Paliativos
9.
Anaesthesiologie ; 72(8): 590-595, 2023 08.
Artigo em Alemão | MEDLINE | ID: mdl-37394611

RESUMO

The timely integration of palliative medicine is an important component in the treatment of various advanced diseases. While a German S­3-guideline on palliative medicine exists for patients with incurable cancer, a recommendation for non-oncological patients and especially for palliative patients presenting in the emergency department or intensive care unit is missing to date. Based on the present consensus paper, the palliative care aspects of the respective medical disciplines are addressed. The timely integration of palliative care aims to improve quality of life and symptom control in clinical acute and emergency medicine as well as intensive care.


Assuntos
Medicina de Emergência , Qualidade de Vida , Humanos , Consenso , Cuidados Críticos , Unidades de Terapia Intensiva
10.
Pneumologie ; 77(8): 544-549, 2023 Aug.
Artigo em Alemão | MEDLINE | ID: mdl-37399837

RESUMO

The timely integration of palliative medicine is an important component in the treatment of various advanced diseases. While a German S-3-guideline on palliative medicine exists for patients with incurable cancer, a recommendation for non-oncological patients and especially for palliative patients being treated in the emergency department or intensive care unit is missing to date. Based on the present consensus paper, the palliative care aspects of the respective medical disciplines are addressed. The timely integration of palliative care aims to improve quality of life and symptom control in clinical acute and emergency medicine as well as intensive care.


Assuntos
Medicina de Emergência , Qualidade de Vida , Humanos , Consenso , Cuidados Críticos , Cuidados Paliativos
11.
Methods Mol Biol ; 2691: 207-224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37355548

RESUMO

Interleukin-6 (IL-6) is a cytokine synthesized by many cells in the human body. IL-6 binds to a membrane-bound receptor (IL-6R), which is only present on hepatocytes, some epithelial cells, and some leukocytes. The complex of IL-6 and IL-6R binds to the ubiquitously expressed receptor subunit gp130, which forms a homodimer and thereby initiates intracellular signaling, e.g., the JAK/STAT and MAPK pathways. Proteases can cleave the membrane-bound IL-6R from the cell surface and generate a soluble IL-6R (sIL-6R), which retains its ability to bind IL-6. The IL-6/sIL-6R complex associates with gp130 and induces signaling even on cells which do not express the IL-6R. This paradigm has been called IL-6 trans-signaling, whereas signaling via the membrane-bound IL-6R is referred to as classic signaling. We have generated several molecular tools to differentiate between both pathways and to analyze the consequences of cellular IL-6 signaling in vivo. One of these tools is soluble gp130Fc, which selectively inhibits IL-6 trans-signaling. This protein under the WHO name Olamkicept has successfully undergone phase II clinical trials in patients with autoimmune diseases. Here, in this chapter, we describe several molecular tools to differentiate between IL-6 classic and trans-signaling and to analyze the consequences of cellular IL-6 signaling in vivo.


Assuntos
Interleucina-6 , Neoplasias , Humanos , Interleucina-6/genética , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Receptores de Interleucina-6/genética , Neoplasias/genética , Citocinas/metabolismo , Inflamação/metabolismo
12.
Med Klin Intensivmed Notfmed ; 118(Suppl 1): 14-38, 2023 Dec.
Artigo em Alemão | MEDLINE | ID: mdl-37285027

RESUMO

The integration of palliative medicine is an important component in the treatment of various advanced diseases. While a German S3 guideline on palliative medicine exists for patients with incurable cancer, a recommendation for non-oncological patients and especially for palliative patients presenting in the emergency department or intensive care unit is missing to date. Based on the present consensus paper, the palliative care aspects of the respective medical disciplines are addressed. The timely integration of palliative care aims to improve quality of life and symptom control in clinical acute and emergency medicine as well as intensive care.


Assuntos
Medicina de Emergência , Qualidade de Vida , Humanos , Consenso , Cuidados Críticos , Unidades de Terapia Intensiva , Cuidados Paliativos
13.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119489, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37271223

RESUMO

The cytokine interleukin-6 (IL-6) has considerable pro-inflammatory properties and is a driver of many physiological and pathophysiological processes. Cellular responses to IL-6 are mediated by membrane-bound or soluble forms of the IL-6 receptor (IL-6R) complexed with the signal-transducing subunit gp130. While expression of the membrane-bound IL-6R is restricted to selected cell types, soluble IL-6R (sIL-6R) enables gp130 engagement on all cells, a process termed IL-6 trans-signalling and considered to be pro-inflammatory. sIL-6R is predominantly generated through proteolytic processing by the metalloproteinase ADAM17. ADAM17 also liberates ligands of the epidermal growth factor receptor (EGFR), which is a prerequisite for EGFR activation and results in stimulation of proliferative signals. Hyperactivation of EGFR mostly due to activating mutations drives cancer development. Here, we reveal an important link between overshooting EGFR signalling and the IL-6 trans-signalling pathway. In epithelial cells, EGFR activity induces not only IL-6 expression but also the proteolytic release of sIL-6R from the cell membrane by increasing ADAM17 surface activity. We find that this derives from the transcriptional upregulation of iRhom2, a crucial regulator of ADAM17 trafficking and activation, upon EGFR engagement, which results in increased surface localization of ADAM17. Also, phosphorylation of the EGFR-downstream mediator ERK mediates ADAM17 activity via interaction with iRhom2. In sum, our study reveals an unforeseen interplay between EGFR activation and IL-6 trans-signalling, which has been shown to be fundamental in inflammation and cancer.


Assuntos
Proteína ADAM17 , Interleucina-6 , Transdução de Sinais , Receptor gp130 de Citocina/genética , Células Epiteliais/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Transdução de Sinais/genética , Humanos
14.
Immunity ; 56(5): 979-997.e11, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37100060

RESUMO

Immune cell trafficking constitutes a fundamental component of immunological response to tissue injury, but the contribution of intrinsic RNA nucleotide modifications to this response remains elusive. We report that RNA editor ADAR2 exerts a tissue- and stress-specific regulation of endothelial responses to interleukin-6 (IL-6), which tightly controls leukocyte trafficking in IL-6-inflamed and ischemic tissues. Genetic ablation of ADAR2 from vascular endothelial cells diminished myeloid cell rolling and adhesion on vascular walls and reduced immune cell infiltration within ischemic tissues. ADAR2 was required in the endothelium for the expression of the IL-6 receptor subunit, IL-6 signal transducer (IL6ST; gp130), and subsequently, for IL-6 trans-signaling responses. ADAR2-induced adenosine-to-inosine RNA editing suppressed the Drosha-dependent primary microRNA processing, thereby overwriting the default endothelial transcriptional program to safeguard gp130 expression. This work demonstrates a role for ADAR2 epitranscriptional activity as a checkpoint in IL-6 trans-signaling and immune cell trafficking to sites of tissue injury.


Assuntos
Interleucina-6 , RNA , Células Endoteliais/metabolismo , Receptor gp130 de Citocina , Endotélio/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo
15.
J Immunol ; 210(11): 1717-1727, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37058116

RESUMO

IL-6 plays a fundamental role in T cell differentiation and is strictly controlled by surface expression and shedding of IL-6R. IL-6 also acts on other cells that might affect T cell maturation. To study the impact of cell-autonomous and uncontrolled IL-6 signaling in T cells, we generated mice with a constitutively active IL-6R gp130 chain (Lgp130) expressed either in all T cells (Lgp130 × CD4Cre mice) or inducible in CD4+ T cells (Lgp130 × CD4CreERT2 mice). Lgp130 × CD4Cre mice accumulated activated T cells, including TH17 cells, in the lung, resulting in severe inflammation. Tamoxifen treatment of Lgp130 × CD4CreERT2 mice caused Lgp130 expression in 40-50% of CD4+ T cells, but mice developed lung disease only after several months. Lgp130+ CD4+ T cells were also enriched for TH17 cells; however, there was concomitant expansion of Lgp130- regulatory T cells, which likely restricted pathologic Lgp130+ T cells. In vitro, constitutive gp130 signaling in T cells enhanced but was not sufficient for TH17 cell differentiation. Augmented TH17 cell development of Lgp130+ T cells was also observed in Lgp130 × CD4CreERT2 mice infected with Staphylococcus aureus, but gp130 activation did not interfere with formation of TH1 cells against Listeria monocytogenes. Lgp130+ CD4+ T cells acquired a memory T cell phenotype and persisted in high numbers as a polyclonal T cell population in lymphoid and peripheral tissues, but we did not observe T cell lymphoma formation. In conclusion, cell-autonomous gp130 signaling alters T cell differentiation. Although gp130 signaling is not sufficient for TH17 cell differentiation, it still promotes accumulation of activated T cells in the lung that cause tissue inflammation.


Assuntos
Pneumonia , Células Th17 , Animais , Camundongos , Diferenciação Celular , Receptor gp130 de Citocina/metabolismo , Inflamação , Interleucina-6/metabolismo , Pulmão/metabolismo , Células Th1/metabolismo , Células Th17/metabolismo
16.
Nat Rev Immunol ; 23(10): 666-681, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37069261

RESUMO

Interleukin-6 (IL-6) is a key immunomodulatory cytokine that affects the pathogenesis of diverse diseases, including autoimmune diseases, chronic inflammatory conditions and cancer. Classical IL-6 signalling involves the binding of IL-6 to the membrane-bound IL-6 receptor α-subunit (hereafter termed 'mIL-6R') and glycoprotein 130 (gp130) signal-transducing subunit. By contrast, in IL-6 trans-signalling, complexes of IL-6 and the soluble form of IL-6 receptor (sIL-6R) signal via membrane-bound gp130. A third mode of IL-6 signalling - known as cluster signalling - involves preformed complexes of membrane-bound IL-6-mIL-6R on one cell activating gp130 subunits on target cells. Antibodies and small molecules have been developed that block all three forms of IL-6 signalling, but in the past decade, IL-6 trans-signalling has emerged as the predominant pathway by which IL-6 promotes disease pathogenesis. The first selective inhibitor of IL-6 trans-signalling, sgp130, has shown therapeutic potential in various preclinical models of disease and olamkicept, a sgp130Fc variant, had promising results in phase II clinical studies for inflammatory bowel disease. Technological developments have already led to next-generation sgp130 variants with increased affinity and selectivity towards IL-6 trans-signalling, along with indirect strategies to block IL-6 trans-signalling. Here, we summarize our current understanding of the biological outcomes of IL-6-mediated signalling and the potential for targeting this pathway in the clinic.


Assuntos
Interleucina-6 , Neoplasias , Humanos , Receptor gp130 de Citocina/metabolismo , Receptores de Interleucina-6 , Citocinas/uso terapêutico , Neoplasias/tratamento farmacológico
17.
Mol Neurodegener ; 18(1): 13, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810097

RESUMO

BACKGROUND: The protease BACE1 is a major drug target for Alzheimer's disease, but chronic BACE1 inhibition is associated with non-progressive cognitive worsening that may be caused by modulation of unknown physiological BACE1 substrates. METHODS: To identify in vivo-relevant BACE1 substrates, we applied pharmacoproteomics to non-human-primate cerebrospinal fluid (CSF) after acute treatment with BACE inhibitors. RESULTS: Besides SEZ6, the strongest, dose-dependent reduction was observed for the pro-inflammatory cytokine receptor gp130/IL6ST, which we establish as an in vivo BACE1 substrate. Gp130 was also reduced in human CSF from a clinical trial with a BACE inhibitor and in plasma of BACE1-deficient mice. Mechanistically, we demonstrate that BACE1 directly cleaves gp130, thereby attenuating membrane-bound gp130 and increasing soluble gp130 abundance and controlling gp130 function in neuronal IL-6 signaling and neuronal survival upon growth-factor withdrawal. CONCLUSION: BACE1 is a new modulator of gp130 function. The BACE1-cleaved, soluble gp130 may serve as a pharmacodynamic BACE1 activity marker to reduce the occurrence of side effects of chronic BACE1 inhibition in humans.


Assuntos
Doença de Alzheimer , Camundongos , Humanos , Animais , Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide , Receptor gp130 de Citocina/uso terapêutico , Ácido Aspártico Endopeptidases , Interleucina-6 , Proteínas do Tecido Nervoso
18.
Proc Natl Acad Sci U S A ; 119(42): e2213744119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215509

RESUMO

Acute and chronic pancreatitis, the latter associated with fibrosis, are multifactorial inflammatory disorders and leading causes of gastrointestinal disease-related hospitalization. Despite the global health burden of pancreatitis, currently, there are no effective therapeutic agents. In this regard, the protease A Disintegrin And Metalloproteinase 17 (ADAM17) mediates inflammatory responses through shedding of bioactive inflammatory cytokines and mediators, including tumor necrosis factor α (TNFα) and the soluble interleukin (IL)-6 receptor (sIL-6R), the latter of which drives proinflammatory IL-6 trans-signaling. However, the role of ADAM17 in pancreatitis is unclear. To address this, Adam17ex/ex mice-which are homozygous for the hypomorphic Adam17ex allele resulting in marked reduction in ADAM17 expression-and their wild-type (WT) littermates were exposed to the cerulein-induced acute pancreatitis model, and acute (1-wk) and chronic (20-wk) pancreatitis models induced by the cigarette smoke carcinogen nicotine-derived nitrosamine ketone (NNK). Our data reveal that ADAM17 expression was up-regulated in pancreatic tissues of animal models of pancreatitis. Moreover, the genetic (Adam17ex/ex mice) and therapeutic (ADAM17 prodomain inhibitor [A17pro]) targeting of ADAM17 ameliorated experimental pancreatitis, which was associated with a reduction in the IL-6 trans-signaling/STAT3 axis. This led to reduced inflammatory cell infiltration, including T cells and neutrophils, as well as necrosis and fibrosis in the pancreas. Furthermore, up-regulation of the ADAM17/IL-6 trans-signaling/STAT3 axis was a feature of pancreatitis patients. Collectively, our findings indicate that the ADAM17 protease plays a pivotal role in the pathogenesis of pancreatitis, which could pave the way for devising novel therapeutic options to be deployed against this disease.


Assuntos
Nitrosaminas , Pancreatite , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Doença Aguda , Animais , Carcinógenos , Ceruletídeo/toxicidade , Citocinas , Desintegrinas , Endopeptidases , Fibrose , Interleucina-6/genética , Interleucina-6/metabolismo , Cetonas , Camundongos , Nicotina , Pancreatite/tratamento farmacológico , Pancreatite/genética , Peptídeo Hidrolases , Fator de Necrose Tumoral alfa/metabolismo
19.
Cancers (Basel) ; 14(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36077603

RESUMO

Melanocytic neoplasms have been genetically characterized in detail during the last decade. Recurrent CTNNB1 exon 3 mutations have been recognized in the distinct group of melanocytic tumors showing deep penetrating nevus-like morphology. In addition, they have been identified in 1-2% of advanced melanoma. Performing a detailed genetic analysis of difficult-to-classify nevi and melanomas with CTNNB1 mutations, we found that benign tumors (nevi) show characteristic morphological, genetic and epigenetic traits, which distinguish them from other nevi and melanoma. Malignant CTNNB1-mutant tumors (melanomas) demonstrated a different genetic profile, instead grouping clearly with other non-CTNNB1 melanomas in methylation assays. To further evaluate the role of CTNNB1 mutations in melanoma, we assessed a large cohort of clinically sequenced melanomas, identifying 38 tumors with CTNNB1 exon 3 mutations, including recurrent S45 (n = 13, 34%), G34 (n = 5, 13%), and S27 (n = 5, 13%) mutations. Locations and histological subtype of CTNNB1-mutated melanoma varied; none were reported as showing deep penetrating nevus-like morphology. The most frequent concurrent activating mutations were BRAF V600 (n = 21, 55%) and NRAS Q61 (n = 13, 34%). In our cohort, four of seven (58%) and one of nine (11%) patients treated with targeted therapy (BRAF and MEK Inhibitors) or immune-checkpoint therapy, respectively, showed disease control (partial response or stable disease). In summary, CTNNB1 mutations are associated with a unique melanocytic tumor type in benign tumors (nevi), which can be applied in a diagnostic setting. In advanced disease, no clear characteristics distinguishing CTNNB1-mutant from other melanomas were observed; however, studies of larger, optimally prospective, cohorts are warranted.

20.
Cells ; 11(17)2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36078095

RESUMO

Ectodomain shedding is an irreversible process to regulate inter- and intracellular signaling. Members of the a disintegrin and metalloprotease (ADAM) family are major mediators of ectodomain shedding. ADAM17 is involved in the processing of multiple substrates including tumor necrosis factor (TNF) α and EGF receptor ligands. Substrates of ADAM17 are selectively processed depending on stimulus and cellular context. However, it still remains largely elusive how substrate selectivity of ADAM17 is regulated. Tetraspanins (Tspan) are multi-membrane-passing proteins that are involved in the organization of plasma membrane micro-domains and diverse biological processes. Closely related members of the Tspan8 subfamily, including CD9, CD81 and Tspan8, are associated with cancer and metastasis. Here, we show that Tspan8 subfamily members use different strategies to regulate ADAM17 substrate selectivity. We demonstrate that in particular Tspan8 associates with both ADAM17 and TNF α and promotes ADAM17-mediated TNF α release through recruitment of ADAM17 into Tspan-enriched micro-domains. Yet, processing of other ADAM17 substrates is not altered by Tspan8. We, therefore, propose that Tspan8 contributes to tumorigenesis through enhanced ADAM17-mediated TNF α release and a resulting increase in tissue inflammation.


Assuntos
Proteínas ADAM , Desintegrinas , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteínas de Membrana , Especificidade por Substrato , Tetraspaninas/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA