Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(17): 7282-7291, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38466178

RESUMO

Transition metal complexes containing the qtpy ligand (2':4,4'':4',4'''-quaterpyridyl) are known to be DNA intercalators or minor groove binders. In this study, new tricationic iridium(III) complexes of qtpy are reported. Both [Ir(bpy)2(qtpy)]3+1 and [Ir(phen)2(qtpy)]3+2 display good water solubility as chloride salts. The complexes possess high-energy excited states, which are quenched in the presence of duplex DNA and even by the mononucleotides guanosine monophosphate and adenosine monophosphate. Further studies reveal that although the complexes bind to quadruplex DNA, they display a preference for duplex structures, which are bound with an order of magnitude higher affinities than their isostructural dicationic RuII-analogues. Detailed molecular dynamics simulations confirm that the complexes are groove binders through the insertion of, predominantly, the qtpy ligand into the minor groove. Photoirradiation of 1 in the presence of plasmid DNA confirms that this class of complexes can function as synthetic photonucleases by cleaving DNA.


Assuntos
Complexos de Coordenação , DNA , Irídio , Irídio/química , DNA/química , DNA/metabolismo , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Clivagem do DNA , Simulação de Dinâmica Molecular , Ligantes , Estrutura Molecular
2.
ACS Chem Neurosci ; 15(4): 716-723, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38235697

RESUMO

The self-assembly of peptides and proteins into ß-sheet rich amyloid fibrils is linked to both functional and pathological states. In this study, the growth of fibrillar structures of the short peptide GNNQQNY, a fragment from the yeast prion Sup35 protein, was examined. Molecular dynamics simulations were used to study alternative mechanisms of fibril growth, including elongation through binding of monomers as well as fibril self-assembly into larger, more mature structures. It was found that after binding, monomers diffused along preformed fibrils toward the ends, supporting the mechanism of fibril growth via elongation. Lateral assembly of protofibrils was found to occur readily, suggesting that this could be the key to transitioning from isolated fibrils to mature multilayer structures. Overall, the work provides mechanistic insights into the competitive pathways that govern amyloid fibril growth.


Assuntos
Amiloide , Príons , Amiloide/química , Peptídeos , Proteínas Priônicas , Saccharomyces cerevisiae/metabolismo , Peptídeos beta-Amiloides/metabolismo
3.
Macromol Biosci ; 23(6): e2200576, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36810963

RESUMO

Peptides and proteins are exposed to a variety of interfaces in a physiological environment, such as cell membranes, protein nanoparticles (NPs), or viruses. These interfaces have a significant impact on the interaction, self-assembly, and aggregation mechanisms of biomolecular systems. Peptide self-assembly, particularly amyloid fibril formation, is associated with a wide range of functions; however, there is a link with neurodegenerative diseases, such as Alzheimer's disease. This review highlights how interfaces affect peptide structure and the kinetics of aggregation leading to fibril formation. In nature, many surfaces are nanostructures, such as liposomes, viruses, or synthetic NPs. Once exposed to a biological medium, nanostructures are coated with a corona, which then determines their activity. Both accelerating and inhibiting effects on peptide self-assembly have been observed. When amyloid peptides adsorb to a surface, they typically concentrate locally, which promotes aggregation into insoluble fibrils. Starting from a combined experimental and theoretical approach, models that allow for a better understanding of peptide self-assembly near hard and soft matter interfaces are introduced and reviewed. Research results from recent years are presented and relationships between biological interfaces, such as membranes and viruses, and amyloid fibril formation are proposed.


Assuntos
Doença de Alzheimer , Nanopartículas , Humanos , Amiloide/química , Amiloide/metabolismo , Peptídeos/metabolismo , Doença de Alzheimer/metabolismo , Membrana Celular/metabolismo , Nanopartículas/química , Peptídeos beta-Amiloides/química
4.
Biomacromolecules ; 21(2): 783-792, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31887030

RESUMO

The islet amyloid polypeptide (IAPP) is a regulatory peptide that can aggregate into fibrillar structures associated with type 2 diabetes. In this study, the IAPP21-27 segment was modified with a biotin linker at the N-terminus (Btn-GNNFGAIL) to immobilize peptide fibrils on streptavidin-coated surfaces. Key residues for fibril formation of the N-terminal biotinylated IAPP21-27 segment were identified by using an alanine scanning approach combined with molecular dynamics simulations, thioflavin T fluorescence measurements, and scanning electron microscopy. Significant contributions of phenylalanine (F23), leucine (L27), and isoleucine (I26) for the fibrillation of the short peptide segment were identified. The fibril morphologies of the peptide variants differed depending on their primary sequence, ranging from flexible and semiflexible to stiff and crystal-like structures. These insights could advance the design of new functional hybrid bionanomaterials and fibril-engineered surface coatings using short peptide segments. To validate this concept, the biotinylated fibrils were immobilized on streptavidin-coated surfaces under spatial control.


Assuntos
Biotinilação/métodos , Variação Genética/genética , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Polimorfismo Genético/genética , Humanos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Propriedades de Superfície
5.
Angew Chem Int Ed Engl ; 55(15): 4826-30, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26938787

RESUMO

Promotion of cell adhesion on biomaterials is crucial for the long-term success of a titanium implant. Herein a novel concept is highlighted combining very stable and affine titanium surface adhesive properties with specific cell binding moieties in one molecule. A peptide containing L-3,4-dihydroxyphenylalanine was synthesized and affinity to titanium was investigated. Modification with a cyclic RGD peptide and a heparin binding peptide (HBP) was realized by an efficient on-resin combination of Diels-Alder reaction with inverse electron demand and Cu(I) catalyzed azide-alkyne cycloaddition. The peptide was fluorescently labeled by thiol Michael addition. Conjugating the cyclic RGD and HBP in one peptide gave improved spreading, proliferation, viability, and the formation of well-developed actin cytoskeleton and focal contacts of osteoblast-like cells.


Assuntos
Adesão Celular , Peptídeos/química , Titânio/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA