Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(3): 1511-1521, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36802533

RESUMO

Cellular functions of membrane proteins are strongly coupled to their structures and aggregation states in the cellular membrane. Molecular agents that can induce the fragmentation of lipid membranes are highly sought after as they are potentially useful for extracting membrane proteins in their native lipid environment. Toward this goal, we investigated the fragmentation of synthetic liposome using hydrophobe-containing polypeptoids (HCPs), a class of facially amphiphilic pseudo-peptidic polymers. A series of HCPs with varying chain lengths and hydrophobicities have been designed and synthesized. The effects of polymer molecular characteristics on liposome fragmentation are systemically investigated by a combination of light scattering (SLS/DLS) and transmission electron microscopy (cryo-TEM and negative stained TEM) methods. We demonstrate that HCPs with a sufficient chain length (DPn ≈ 100) and intermediate hydrophobicity (PNDG mol % = 27%) can most effectively induce the fragmentation of liposomes into colloidally stable nanoscale HCP-lipid complexes owing to the high density of local hydrophobic contact between the HCP polymers and lipid membranes. The HCPs can also effectively induce the fragmentation of bacterial lipid-derived liposomes and erythrocyte ghost cells (i.e., empty erythrocytes) to form nanostructures, highlighting the potential of HCPs as novel macromolecular surfactants toward the application of membrane protein extraction.


Assuntos
Lipossomos , Polímeros , Lipossomos/química , Membrana Celular/metabolismo , Polímeros/química , Proteínas de Membrana , Lipídeos/química , Interações Hidrofóbicas e Hidrofílicas
2.
J Colloid Interface Sci ; 620: 135-143, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35421750

RESUMO

The integration of cationic and hydrophobic functionalities into hydrophobically modified chitosan (HMC) biopolymer facilitates complementary emulsion stabilization with negatively charged halloysite clay nanotubes (HNT). Oil-in-water emulsions with smaller droplet sizes and significantly improved interfacial resistance to droplet coalescence are obtained on complementary emulsion stabilization by HNT and HMC compared to the individual emulsifiers alone. Contact angle measurements shows that the adsorption of the cationic HMC onto the negatively charged HNT modifies the surface wettability of the nanotubes, facilitating the attachment of the nanotubes to the oil-water interface. High resolution cryo-SEM imaging reveals that free HMC chains locks the nanotubes together at the oil-water interface, creating a high barrier to droplet coalescence. The emulsion stability is an order of magnitude higher for conditions in which the aqueous HNT dispersion is stabilized by the HMC compared to conditions where the negatively charged HNT is strongly flocculated by the cationic HMC. The hydrophobic interaction between HMC chains, insertion of HMC hydrophobes into the oil phase and electrostatic interactions between HMC and HNT are proposed as key mechanisms driving the increased emulsion stability. For potential application as a dispersant system for crude oil spill treatment, the nanotubular morphology of HNT was further exploited for the encapsulation of the water-insoluble surfactant, sorbitan monooleate (Span 80). The HMC and HNT sterically strengthens the oil-water interfacial layer while release of the Span 80 surfactant from the HNT lumen lowers the oil-water interfacial tension. The concepts advanced here are relevant in the development of environmentally-benign dispersants for oil spill remediation.


Assuntos
Quitosana , Nanotubos , Quitosana/química , Argila/química , Emulsões/química , Nanotubos/química , Tensoativos/química , Água/química
3.
Adv Funct Mater ; 31(10)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-34366760

RESUMO

The authors designed a structurally stable nano-in-nano (NANO2) system highly capable of bioimaging via an aggregation-enhanced NIR excited emission and photoacoustic response achieved based on atomically precise gold nanoclusters protected by linear thiolated ligands [Au25(SC n H2n+1)18, n = 4-16] encapsulated in discoidal phospholipid bicelles through a one-pot synthesis. The detailed morphological characterization of NANO2 is conducted using cryogenic transmission electron microscopy, small/wide angle X-ray scattering with the support of molecular dynamics simulations, providing information on the location of Au nanoclusters in NANO2. The photoluminescence observed for NANO2 is 20-60 times more intense than that of the free Au nanoclusters, with both excitation and emission wavelengths in the near-infrared range, and the photoacoustic signal is more than tripled. The authors attribute this newly discovered aggregation-enhanced photoluminescence and photoacoustic signals to the restriction of intramolecular motion of the clusters' ligands. With the advantages of biocompatibility and high cellular uptake, NANO2 is potentially applicable for both in vitro and in vivo imaging, as the authors demonstrate with NIR excited emission from in vitro A549 human lung and the KB human cervical cancer cells.

4.
Langmuir ; 37(27): 8115-8128, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34191521

RESUMO

Marine oil dispersants typically contain blends of surfactants dissolved in solvents. When introduced to the crude oil-seawater interface, dispersants facilitate the breakup of crude oil into droplets that can disperse in the water column. Recently, questions about the environmental persistence and toxicity of commercial dispersants have led to the development of "greener" dispersants consisting solely of food-grade surfactants such as l-α-phosphatidylcholine (lecithin, L) and polyoxyethylenated sorbitan monooleate (Tween 80, T). Individually, neither L nor T is effective at dispersing crude oil, but mixtures of the two (LT blends) work synergistically to ensure effective dispersion. The reasons for this synergy remain unexplained. More broadly, an unresolved challenge is to be able to predict whether a given surfactant (or a blend) can serve as an effective dispersant. Herein, we investigate whether the LT dispersant effectiveness can be correlated with thermodynamic phase behavior in model systems. Specifically, we study ternary "DOW" systems comprising LT dispersant (D) + a model oil (hexadecane, O) + synthetic seawater (W), with the D formulation being systematically varied (across 0:100, 20:80, 40:60, 60:40, 80:20, and 100:0 L:T weight ratios). We find that the most effective LT dispersants (60:40 and 80:20 L:T) induce broad Winsor III microemulsion regions in the DOW phase diagrams (Winsor III implies that the microemulsion coexists with aqueous and oil phases). This correlation is generally consistent with expectations from hydrophilic-lipophilic deviation (HLD) calculations, but specific exceptions are seen. This study then outlines a protocol that allows the phase behavior to be observed on short time scales (ca. hours) and provides a set of guidelines to interpret the results. The complementary use of HLD calculations and the outlined fast protocol are expected to be used as a predictive model for effective dispersant blends, providing a tool to guide the efficient formulation of future marine oil dispersants.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Lecitinas , Poluição por Petróleo/análise , Polissorbatos , Tensoativos , Poluentes Químicos da Água/análise
5.
J Phys Chem B ; 125(12): 3145-3152, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33730500

RESUMO

The hydrophobic effect of alkyl group insertion into phospholipid bilayers is exploited in modifying and modulating vesicle structure. We show that amphiphilic polypeptoids (peptide mimics) with n-decyl side chains, which we term as hydrophobe-containing polypeptoids (HCPs), can insert the alkyl hydrophobes into the membrane bilayer of phospholipid-based vesicles. Such insertion leads to disruption of the liposomes and the formation of HCP-lipid complexes that are colloidally stable in aqueous solution. Interestingly, when these complexes are added to fresh liposomes, remnant uncomplexed hydrophobes (the n-decyl groups) bridge liposomes and fuse them. The fusion leads to the engulfing of liposomes and the formation of multilayered vesicles. The morphology of the liposome system can be changed from stopping fusion and forming clustered vesicles to the continued formation of multilayered liposomes simply by controlling the amount of the HCP-lipid complex added. The entire procedure occurs in aqueous systems without the addition of any other solvents. There are several implications to these observations including the biological relevance of mimicking fusogenic proteins such as the SNARE proteins and the development of new drug delivery technologies to impact delivery to cell organelles.


Assuntos
Bicamadas Lipídicas , Lipossomos , Interações Hidrofóbicas e Hidrofílicas , Fusão de Membrana , Fosfolipídeos , Solventes
6.
ACS Appl Mater Interfaces ; 12(1): 1840-1849, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31820921

RESUMO

The use of chemical dispersants is a well-established approach to oil spill remediation where surfactants in an appropriate solvent are contacted with the oil to reduce the oil-water interfacial tension and create small oil droplets capable of being sustained in the water column. Dispersant formulations typically include organic solvents, and to minimize environmental impacts of dispersant use and avoid surfactant wastage it is beneficial to use water-based systems and target the oil-water interface. The approach here involves the tubular clay minerals known as halloysite nanotubes (HNTs) that serve as nanosized reservoir for surfactants. Such particles generate Pickering emulsions with oil, and the release of surfactant reduces the interfacial tension to extremely low values allowing small droplets to be formed that are colloidally stable in the water column. We report new findings on engineering the surfactant-loaded halloysite nanotubes to be stimuli responsive such that the release of surfactant is triggered by contact with oil. This is achieved by forming a thin coating of wax to stopper the nanotubes to prevent the premature release of surfactant. Surfactant release only occurs when the wax dissolves upon contact with oil. The system thus represents an environmentally benign approach where the wax coated HNTs are dispersed in an aqueous solvent and delivered to an oil spill whereupon they release surfactant to the oil-water interface upon contact with oil.

7.
Langmuir ; 35(50): 16630-16639, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31804836

RESUMO

Dispersants, used in the mitigation of oil spills, are mixtures of amphiphilic molecules (surfactants) dissolved in a solvent. The recent large-scale use of dispersants has raised environmental concerns regarding the safety of these materials. In response to these concerns, our lab has developed a class of eco-friendly dispersants based on blends of the food-grade surfactants, soy lecithin (L) and Tween 80 (T), in a solvent. We have shown that these "L/T dispersants" are very efficient at dispersing crude oil into seawater. The solvent for dispersants is usually selected based on factors like toxicity, volatility, or viscosity of the overall mixture. However, with regard to the dispersion efficiency of crude oil, the solvent is considered to play a negligible role. In this paper, we re-examine the role of solvent in the L/T system and show that it can actually have a significant impact on the dispersion efficiency. That is, the dispersion efficiency can be altered from poor to excellent simply by varying the solvent while keeping the same blend of surfactants. We devise a systematic procedure for selecting the optimal solvents by utilizing Hansen solubility parameters. The optimal solvents are shown to have a high affinity for crude oil and limited hydrophilicity. Our analysis further enables us to identify solvents that combine high dispersion efficiency, good solubility of the L/T surfactants, a low toxicity profile, and a high flash point.

8.
Langmuir ; 35(47): 15335-15343, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31686512

RESUMO

Peptoids are highly biocompatible pseudopeptidic polyglycines with designable substituents on the nitrogen atoms. The therapeutic and drug-carrying potential of these materials requires a fundamental understanding of their interactions with lipid bilayers. In this work, we use amphiphilic polypeptoids with up to 100 monomeric units where a significant fraction (26%) of the nitrogen atoms are functionalized with decyl groups (hydrophobes) that insert into the lipid bilayer through the hydrophobic effect. These hydrophobically modified polypeptoids (HMPs) insert their hydrophobes into lipid bilayers creating instabilities that lead to the rupture of vesicles. At low HMP concentrations, such rupture leads to the creation of large fragments which remarkably anchor to intact vesicles through the hydrophobic effect. At high HMP concentrations, all vesicles rupture to smaller HMP-lipid fragments of the order of 10 nm. We show that the technique for such nanoscale polymer-lipid fragments can be exploited to sustain highly hydrophobic drug species in solution. Using the kinase inhibitor, Sorafenib as a model drug, it is shown that HMP-lipid fragments containing the drug can efficiently enter a hepatocellular carcinoma cell line (Huh 7.5), indicating the use of such fragments as drug delivery nanocarriers.


Assuntos
Portadores de Fármacos/química , Bicamadas Lipídicas/química , Peptoides/química , Fosfatidilcolinas/química , Tensoativos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Portadores de Fármacos/síntese química , Portadores de Fármacos/toxicidade , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Peptoides/síntese química , Peptoides/toxicidade , Inibidores de Proteínas Quinases/farmacologia , Sorafenibe/farmacologia , Glycine max/química , Tensoativos/síntese química , Tensoativos/toxicidade
9.
ACS Appl Mater Interfaces ; 11(31): 27944-27953, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31306577

RESUMO

Halloysite nanotubes (HNTs), naturally occurring and environmental benign clay nanoparticles, have been successfully functionalized with amphiphilic polypeptoid polymers by surface-initiated polymerization methods and investigated as emulsion stabilizers toward oil spill remediation. The hydrophilicity and lipophilicity balance (HLB) of the grafted polypeptoids was shown to affect the wettability of functionalized HNTs and their performance as stabilizers for oil-in-water emulsions. The functionalized HNTs having relatively high hydrophobic content (HLB = 12.0-15.0) afforded the most stable oil-in-water emulsions containing the smallest oil droplet sizes. This has been attributed to the augmented interfacial activities of polypeptoid-functionalized HNTs, resulting in more effective reduction of interfacial tension, enhancement of thermodynamic propensity of the HNT particles to partition at the oil-water interface, and increased emulsion viscosity relative to the pristine HNTs. Cell culture studies have revealed that polypeptoid-functionalized HNTs are noncytotoxic toward Alcanivorax borkumensis, a dominant alkane degrading bacterium found in the ocean after oil spill. Notably, the functionalized HNTs with higher hydrophobic polypeptoid content (HLB = 12.0-14.3) were shown to induce more cell proliferation than either pristine HNTs or those functionalized with less hydrophobic polypeptoids. It was postulated that the functionalized HNTs with higher hydrophobic polypeptoid content may promote the bacterial proliferation by providing larger oil-water interfacial area and better anchoring of bacteria at the interface.

10.
J Sex Med ; 16(3): 383-393, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30846112

RESUMO

BACKGROUND: Previous studies have documented improvement in erectile function after bilateral cavernous nerve injury (BCNI) in rats with the use of pioglitazone. Our group determined this improvement to be mediated by the insulin-like growth factor-1 (IGF-1) pathway. AIM: To eliminate the systemic effects of pioglitazone and evaluate the local delivery of IGF-1 by polymeric microspheres after BCNI in the rat. METHODS: Male Sprague-Dawley rats aged 10-12 weeks were assigned at random to 3 groups: sham operation with phosphate buffered saline (PBS)-loaded microspheres (sham group), crush injury with PBS-loaded microspheres (crush group), and crush injury with IGF-1-loaded microspheres (IGF-1 group). Poly(lactic-co-glycolic) acid microspheres were injected underneath the major pelvic ganglion (MPG). IGF-1 was released at approximately 30 ng/mL/day per MPG per rat. OUTCOMES: Functional results were demonstrated by maximal intracavernosal pressure (ICP) normalized to mean arterial pressure (MAP). Protein-level analysis data of IGF-1 receptor (IGF-1R), extracellular signal-regulated kinase (ERK)-1/2, and neuronal nitric oxide synthase (nNOS) were obtained using Western blot analysis and immunohistochemistry for both the cavernosal tissue and the MPG and cavernous nerve (CN). RESULTS: At 2 weeks after nerve injury, animals treated with IGF-1 demonstrated improved erectile functional recovery (ICP/MAP) at all voltages compared with BCNI (2.5V, P = .001; 5V, P < .001; 7.5V, P < .001). Western blot results revealed that up-regulation of the IGF-1R and ERK-1/2 in both the nervous and erectile tissue was associated with improved erectile function recovery. There were no significant between-group differences in nNOS protein levels in cavernosal tissue, but there was an up-regulation of nNOS in the MPG and CN. Immunohistochemistry confirmed these trends. CLINICAL TRANSLATION: Local up-regulation of the IGF-1R in the neurovascular bed at the time of nerve injury may help men preserve erectile function after pelvic surgery, such as radical prostatectomy, eliminating the need for systemic therapy. STRENGTHS & LIMITATIONS: This study demonstrates that local drug delivery to the MPG and CN can affect the CN tissue downstream, but did not investigate the potential effects of up-regulation of the growth factor receptors on prostate cancer tissue. CONCLUSION: Stimulating the IGF-1R at the level of the CN has the potential to mitigate erectile dysfunction in men after radical prostatectomy, but further research is needed to evaluate the safety of this growth factor in the setting of prostate cancer. Haney NM, Talwar S, Akula PK, et al. Insulin-Like Growth Factor-1-Loaded Polymeric Poly(Lactic-Co-Glycolic) Acid Microspheres Improved Erectile Function in a Rat Model of Bilateral Cavernous Nerve Injury. J Sex Med 2019;16:383-393.


Assuntos
Disfunção Erétil/tratamento farmacológico , Fator de Crescimento Insulin-Like I/administração & dosagem , Ereção Peniana/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Disfunção Erétil/fisiopatologia , Plexo Hipogástrico/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Microesferas , Óxido Nítrico Sintase Tipo I/metabolismo , Pênis/fisiopatologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Traumatismos do Sistema Nervoso/tratamento farmacológico
11.
J Glaucoma ; 28(6): 512-518, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30807440

RESUMO

PRECIS: Rabbit model studies suggested better morphology blebs with equal intraocular pressure (IOP) efficacy as a standard mitomycin C (MMC) trabeculectomy using a novel slow-release drug delivery antifibrotic system delivering small quantities of MMC and 5-fluorouracil (5-FU). PURPOSE: To evaluate 2 different concentrations of biodegradable poly(lactic-co-glycolic acid) (PLGA) system with 5-FU and MMC (ElutiGLASS) for their ability to reduce fibrosis and compare the results with standard trabeculectomy with MMC in a rabbit model. MATERIALS AND METHODS: New Zealand albino rabbits (19) were divided into 3 groups (A, B, C) and standard trabeculectomy operation was performed in the right eye of each rabbit.Group (A) had trabeculectomy with MMC (0.4 mg/mL) applied using a Weck cell sponge; (B) trabeculectomy with slow-release ElutiGLASS (0.23 mg, 5-FU/0.33 µg MMC released over 23 to 30 d); (C) trabeculectomy with rapid release ElutiGLASS (0.45 mg of 5-FU/0.65 µg MMC, released over 5 to 7 d). The rabbits were followed for 3 months before euthanasia. RESULTS: Bleb morphology, vascularity, and fibrosis were less pronounced in groups B and C when compared with group A at 3 months. Group B appears to have a lower and more diffuse bleb appearance compared with the other 2 groups with honeycomb appearance on both clinical examination and ultrasound biomicroscopy imaging with higher percentage of maintained bleb space (83%), less fibrosis than group A while maintaining the same low inflammation score as the other 2 groups on histology. At 3 months, the PLGA polymer had completely disappeared in all rabbits. There were no statistical differences in the degree of IOP reduction or histologic inflammation, among the 3 groups. CONCLUSIONS: We successfully created a sustained-release antifibrotic drug delivery system that delivered known dosage of the drugs at doses that are significantly lower than the current standard, and resulted in less fibrosis while maintaining a healthy bleb and equal reduction of IOP. TRANSLATIONAL RELEVANCE: These results are supportive of the antifibrotic effect of the slow-release drug delivery system used in conjunction with trabeculectomy, thus paving the way for human pilot studies to improve and simplify existing surgical techniques for filtering surgeries in glaucoma.


Assuntos
Sistemas de Liberação de Medicamentos , Fluoruracila , Glaucoma , Mitomicina , Trabeculectomia , Animais , Humanos , Masculino , Coelhos , Implantes Absorvíveis , Implantes de Medicamento , Liberação Controlada de Fármacos , Endoftalmite/tratamento farmacológico , Endoftalmite/etiologia , Endoftalmite/metabolismo , Fibrose/etiologia , Fibrose/metabolismo , Fibrose/prevenção & controle , Cirurgia Filtrante/efeitos adversos , Fluoruracila/administração & dosagem , Fluoruracila/efeitos adversos , Fluoruracila/farmacocinética , Glaucoma/metabolismo , Glaucoma/cirurgia , Pressão Intraocular , Mitomicina/administração & dosagem , Mitomicina/efeitos adversos , Mitomicina/farmacocinética , Complicações Pós-Operatórias/tratamento farmacológico , Complicações Pós-Operatórias/metabolismo , Tonometria Ocular , Trabeculectomia/efeitos adversos , Trabeculectomia/métodos
12.
J Colloid Interface Sci ; 524: 279-288, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29655147

RESUMO

HYPOTHESIS: Polyoxyethylene (20) sorbitan monooleate (Tween 80) can be incorporated into the gel-like phase formed by L-α-phosphatidylcholine (PC) and dioctyl sulfosuccinate sodium salt (DOSS) for potential application as a gel-like dispersant for oil spill treatment. Such gel-like dispersants offer advantages over existing liquid dispersants for mitigating oil spill impacts. EXPERIMENTS: Crude oil-in-saline water emulsions stabilized by the surfactant system were characterized by optical microscopy and turbidity measurements while interfacial tensions were measured by the spinning drop and pendant drop techniques. The microstructure of the gel-like surfactant mesophase was elucidated using small angle neutron scattering (SANS), cryo scanning electron microscopy (cryo-SEM), and 31P nuclear magnetic resonance (NMR) spectroscopy. FINDINGS: The gel-like phase consisting of PC, DOSS and Tween 80 is positively buoyant on water and breaks down on contact with floating crude oil layers to release the surfactant components. The surfactant mixture effectively lowers the crude oil-saline water interfacial tension to the 10-2 mN/m range, producing stable crude oil-in-saline water emulsions with an average droplet size of about 7.81 µm. Analysis of SANS, cryo-SEM and NMR spectroscopy data reveals that the gel-like mesophase has a lamellar microstructure that transition from rolled lamellar sheets to onion-like, multilamellar structures with increasing Tween 80 content.

13.
ACS Appl Mater Interfaces ; 10(16): 13542-13551, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29620856

RESUMO

Thin-shelled hollow silica particles are synthesized using an aerosol-based process where the concentration of a silica precursor tetraethyl orthosilicate (TEOS) determines the shell thickness. The synthesis involves a novel concept of the salt bridging of an iron salt, FeCl3, to a cationic surfactant, cetyltrimethylammonium bromide (CTAB), which modulates the templating effect of the surfactant on silica porosity. The salt bridging leads to a sequestration of the surfactant in the interior of the droplet with the formation of a dense silica shell around the organic material. Subsequent calcination consistently results in hollow particles with encapsulated iron oxides. Control of the TEOS levels leads to the generation of ultrathin-shelled (∼10 nm) particles which become susceptible to rupture upon exposure to ultrasound. The dense silica shell that is formed is impervious to entry of chemical species. Mesoporosity is restored to the shell through desilication and reassembly, again using CTAB as a template. The mesoporous-shelled hollow particles show good reactivity toward the reductive dichlorination of trichloroethylene (TCE), indicating access of TCE to the particle interior. The ordered mesoporous thin-shelled particles containing active iron species are viable systems for chemical reaction and catalysis.

14.
Colloids Surf B Biointerfaces ; 164: 27-33, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29367054

RESUMO

Halloysites (tubular aluminosilicate) are introduced as inexpensive natural nanoparticles that form and stabilize oil-water emulsions. Pickering emulsification can proceed with energies low enough to be afforded by ocean turbulence and the stability of droplets extends over more than a week. The oil/water interface is shown to be roughened and bacteria, which are added for oil degradation, are better attached to such oil droplets than to droplets without halloysites. The metabolic activity of Alcanivorax borkumensis, alkanotrophic bacteria widely distributed in marine environments, is enhanced by halloysite addition. A halloysite-based dispersant system is therefore environmentally friendly and promising for further optimization. The key elements of the described formulations are natural clay nanotubes, which are abundantly available in thousands of tons, thus making this technology scalable for environmental remediation.


Assuntos
Alcanivoraceae/crescimento & desenvolvimento , Silicatos de Alumínio/química , Emulsões/química , Nanotubos/microbiologia , Poluição por Petróleo , Biodegradação Ambiental , Argila , Contagem de Colônia Microbiana , Cinética , Nanotubos/ultraestrutura , Óleos , Oxazinas/metabolismo , Água do Mar/microbiologia
15.
Phys Chem Chem Phys ; 19(22): 14388-14400, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28429009

RESUMO

Aggregation behavior of cyclic polypeptoids bearing zwitterionic end-groups in methanol has been studied using a combination of experimental and simulation techniques. The data from SANS and cryo-TEM indicate that the solution contains small clusters of these cyclic polypeptoids, ranging from a single polypeptoid chain to small oligomers, while the linear counterpart shows no cluster formation. Atomistic molecular dynamics simulations reveal that the driving force for this clustering behavior is due to the interplay between the effective repulsion due to the solvation of the dipoles formed by the charged end-groups in each polypeptoid chain and the attractive forces due to dipole-dipole interactions and the solvophobic effect.

16.
Langmuir ; 33(11): 2780-2789, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28248521

RESUMO

We report the ability of hydrophobically modified polypeptoids (HMPs), which are amphiphilic pseudopeptidic macromolecules, to connect across lipid bilayers and thus form layered structures on liposomes. The HMPs are obtained by attaching hydrophobic decyl groups at random points along the polypeptoid backbone. Although native polypeptoids (with no hydrophobes) have no effect on liposomal structure, the HMPs remodel the unilamellar liposomes into structures with comparable diameters but with multiple concentric bilayers. The transition from single-bilayer to multiple-bilayer structures is revealed by small-angle neutron scattering (SANS) and cryo-transmission electron microscopy (cryo-TEM). The spacing between bilayers is found to be relatively uniform at ∼6.7 nm. We suggest that the amphiphilic nature of the HMPs explains the formation of multibilayered liposomes; i.e., the HMPs insert their hydrophobic tails into adjacent bilayers and thereby serve as the connective glue between bilayers. At higher HMP concentrations, the liposomes are entirely disrupted into much smaller micellelike structures through extensive hydrophobe insertion. Interestingly, these small structures can reattach to fresh unilamellar liposomes and self-assemble to form new two-bilayer liposomes. The two-bilayer liposomes in our study are reminiscent of two-bilayer organelles such as the nucleus in eukaryotic cells. The observations have significance in designing new nanoscale drug delivery carriers with multiple drugs on separate lipid bilayers and extending liposome circulation times with entirely biocompatible materials.


Assuntos
Bicamadas Lipídicas/química , Lipossomos/química , Fosfatidilcolinas/química , Lipossomas Unilamelares/química , Microscopia Crioeletrônica , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Transmissão
17.
J Pharm Sci ; 106(5): 1355-1362, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28159640

RESUMO

This study reports, for the first time, development of tyrosine kinase inhibitor-loaded, thermosensitive liposomes (TKI/TSLs) and their efficacy for treatment of renal cell carcinoma when triggered by focused ultrasound (FUS). Uptake of these nanoparticles into renal cancer cells was visualized with confocal and fluorescent imaging of rhodamine B-loaded liposomes. The combination of TKI/TSLs and FUS was tested in an in vitro tumor model of renal cell carcinoma. According to MTT cytotoxic assay and flow cytometric analysis, the combined treatment led to the least viability (23.4% ± 2.49%, p < 0.001), significantly lower than that observed from treatment with FUS (97.6% ± 0.67%, not significant) or TKI/TSL (71.0% ± 3.65%, p < 0.001) at 96 h compared to control. The importance of this unique, synergistic combination was demonstrated in viability experiments with non-thermosensitive liposomes (TKI/NTSL + FUS: 58.8% ± 1.5% vs. TKI/TSL + FUS: 36.2% ± 1.4%, p < 0.001) and heated water immersion (TKI/TSL + WB43°: 59.3% ± 2.91% vs. TKI/TSL + FUS: 36.4% ± 1.55%, p < 0.001). Our findings coupled with the existing use of FUS in clinical practice make the proposed combination of targeted chemotherapy, nanotechnology, and FUS a promising platform for enhanced drug delivery and cancer treatment.


Assuntos
Carcinoma de Células Renais/metabolismo , Liberação Controlada de Fármacos , Temperatura Alta , Neoplasias Renais/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Ondas Ultrassônicas , Carcinoma de Células Renais/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Humanos , Neoplasias Renais/tratamento farmacológico , Lipossomos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos da radiação , Resultado do Tratamento
18.
Mol Pharm ; 13(9): 3080-90, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27383214

RESUMO

High-intensity focused ultrasound (HIFU) can locally ablate biological tissues such as tumors, i.e., induce their rapid heating and coagulative necrosis without causing damage to surrounding healthy structures. It is widely used in clinical practice for minimally invasive treatment of prostate cancer. Nonablative, low-power HIFU was established as a promising tool for triggering the release of chemotherapeutic drugs from temperature-sensitive liposomes (TSLs). In this study, we combine ablative HIFU and thermally triggered chemotherapy to address the lack of safe and effective treatment options for elderly patients with high-risk localized prostate cancer. DU145 prostate cancer cells were exposed to chemotherapy (free and liposomal Sorafenib) and ablative HIFU, alone or in combination. Prior to cell viability assessment by trypan blue exclusion and flow cytometry, the uptake of TSLs by DU145 cells was verified by confocal microscopy and cryogenic scanning electron microscopy (cryo-SEM). The combination of TSLs encapsulating 10 µM Sorafenib and 8.7W HIFU resulted in a viability of less than 10% at 72 h post-treatment, which was significant less than the viability of the cells treated with free Sorafenib (76%), Sorafenib-loaded TSLs (63%), or HIFU alone (44%). This synergy was not observed on cells treated with Sorafenib-loaded nontemperature sensitive liposomes and HIFU. According to cryo-SEM analysis, cells exposed to ablative HIFU exhibited significant mechanical disruption. Water bath immersion experiments also showed an important role of mechanical effects in the synergistic enhancement of TSL-mediated chemotherapy by ablative HIFU. This combination therapy can be an effective strategy for treatment of geriatric prostate cancer patients.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Neoplasias da Próstata/terapia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Microscopia Crioeletrônica , Sistemas de Liberação de Medicamentos/métodos , Humanos , Lipossomos/química , Masculino , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Niacinamida/química , Niacinamida/farmacologia , Compostos de Fenilureia/química , Sorafenibe
19.
Chem Mater ; 28(3): 727-737, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-27458325

RESUMO

A series of ABC triblock copolypeptoids [i.e., poly(N-allyl glycine)-b-poly(N-methyl glycine)-b-poly(N-decyl glycine) (AMD)] with well-defined structure and varying composition have been synthesized by sequential primary amine-initiated ring-opening polymerization of the corresponding N-substituted N-carboxyanhydride monomers (Al-NCA, Me-NCA, and De-NCA). The ABC block copolypeptoids undergo sol-to-gel transitions with increasing temperature in water and biological media at low concentrations (2.5-10 wt %). The sol-gel transition is rapid and fully reversible with a narrow transition window, evidenced by the rheological measurements. The gelation temperature (Tgel) and mechanical stiffness of the hydrogels are highly tunable: Tgel in the 26.2-60.0 °C range, the storage modulus (G') and Young's modulus (E) in the 0.2-780 Pa and 0.5-2346 Pa range, respectively, at the physiological temperature (37 °C) can be readily accessed by controlling the block copolypeptoid composition and the polymer solution concentration. The hydrogel is injectable through a 24 gauge syringe needle and maintains their shape upon in contact with surfaces or water baths that are kept above the sol-gel transition temperature. The hydrogels exhibit minimal cytotoxicity toward human adipose derived stem cells (hASCs), evidenced from both alamarBlue and PicoGreen assays. Furthermore, quantitative PCR analysis revealed significant up-regulation of the Col2a1 gene and down-regulation of ANGPT1 gene, suggesting that the hydrogel exhibit biological activity in inducing chondrogenesis of hASCs. It was also demonstrated that the hydrogel can be used to quantitatively encapsulate water-soluble enzymes (e.g., horseradish peroxidase) by manipulating the sol-gel transition. The enzymatic activity of HRP remain unperturbed after encapsulation at 37 °C for up to 7 d, suggesting that the hydrogel does not adversely affect the enzyme structure and thereby the enzymatic activity. These results suggest that the polypeptoid hydrogel a promising synthetic platform for tissue engineering or protein storage applications.

20.
J Colloid Interface Sci ; 470: 31-38, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26928062

RESUMO

Pickering emulsions offer an established method of stabilizing oil-in-water emulsions as either an alternative to surfactants or as an additive together with surfactants, providing greater colloidal stability even at low particle concentrations. This work presents a novel experimental approach to study the influence of several system parameters on the effectiveness of Pickering emulsion systems. Specifically, a dodecane oil drop stabilized by hard carbon microspheres in an aqueous saline solution is used as a model system to obtain both quantitative and qualitative information on the effectiveness of the microspheres as a function of their surface wetting properties. The test setup, in which a macroscopic oil drop is brought into contact with a test surface in a controlled motion and environment, allows for several aspects of the test (for e.g., oil drop size, approach velocity, normal force, solution ionic strength, temperature, pH, and presence of surfactants) to be potentially controlled and studied precisely. To demonstrate the capabilities of the experimental set-up, hard carbon microspheres are modified with a poly(styrenesulfonate) shell through ATRP in order to tune the wettability of the particles through choice of polymer, which are then used to stabilize a dodecane oil drop in an aqueous saline solution. The particles effectively form a steric barrier preventing the spreading of an oil drop on hydrophobic surfaces and also preventing the coalescence of stabilized oil drops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA