Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 11: 1359176, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476603

RESUMO

NAD+, a pivotal coenzyme central to metabolism, exhibits a characteristic decline with age. In mice, NAD+ levels can be elevated via treatment with apigenin, a natural flavonoid that inhibits the NAD+-consuming glycoprotein CD38. In animal models, apigenin positively impacts both sleep and longevity. For example, apigenin improves learning and memory in older mice, reduces tumor proliferation in a mouse xenograft model of triple-negative breast cancer, and induces sedative effects in mice and rats. Moreover, apigenin elongates survival in fly models of neurodegenerative disease and apigenin glycosides increase lifespan in worms. Apigenin's therapeutic potential is underscored by human clinical studies using chamomile extract, which contains apigenin as an active ingredient. Collectively, chamomile extract has been reported to alleviate anxiety, improve mood, and relieve pain. Furthermore, dietary apigenin intake positively correlates with sleep quality in a large cohort of adults. Apigenin's electron-rich flavonoid structure gives it strong bonding capacity to diverse molecular structures across receptors and enzymes. The effects of apigenin extend beyond CD38 inhibition, encompassing agonistic and antagonistic modulation of various targets, including GABA and inflammatory pathways. Cumulatively, a large body of evidence positions apigenin as a unique molecule capable of influencing both aging and sleep. Further studies are warranted to better understand apigenin's nuanced mechanisms and clinical potential.

2.
Geroscience ; 46(3): 3429-3443, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38441802

RESUMO

Epigenetic aging clocks are computational models that predict age using DNA methylation information. Initially, first-generation clocks were developed to make predictions using CpGs that change with age. Over time, next-generation clocks were created using CpGs that relate to both age and health. Since existing next-generation clocks were constructed in blood, we sought to develop a next-generation clock optimized for prediction in cheek swabs, which are non-invasive and easy to collect. To do this, we collected MethylationEPIC data as well as lifestyle and health information from 8045 diverse adults. Using a novel simulated annealing approach that allowed us to incorporate lifestyle and health factors into training as well as a combination of CpG filtering, CpG clustering, and clock ensembling, we constructed CheekAge, an epigenetic aging clock that has a strong correlation with age, displays high test-retest reproducibility across replicates, and significantly associates with a plethora of lifestyle and health factors, such as BMI, smoking status, and alcohol intake. We validated CheekAge in an internal dataset and multiple publicly available datasets, including samples from patients with progeria or meningioma. In addition to exploring the underlying biology of the data and clock, we provide a free online tool that allows users to mine our methylomic data and predict epigenetic age.


Assuntos
Envelhecimento , Epigênese Genética , Humanos , Reprodutibilidade dos Testes , Ilhas de CpG , Envelhecimento/genética , Estilo de Vida
3.
Ageing Res Rev ; 87: 101922, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37004845

RESUMO

The restriction of calories, branched-chain amino acids, and methionine have all been shown to extend lifespan in model organisms. Recently, glycine was found to boost longevity in genetically heterogenous mice. This simple amino acid similarly extends lifespan in rats and improves health in mammalian models of age-related disease. While compelling data indicate that glycine is a pro-longevity molecule, divergent mechanisms may underlie its effects on aging. Glycine is abundant in collagen, a building block for glutathione, a precursor to creatine, and an acceptor for the enzyme glycine N-methyltransferase (GNMT). A review of the literature strongly implicates GNMT, which clears methionine from the body by taking a methyl group from S-adenosyl-L-methionine and methylating glycine to form sarcosine. In flies, Gnmt is required for reduced insulin/insulin-like growth factor 1 signaling and dietary restriction to fully extend lifespan. The geroprotector spermidine requires Gnmt to upregulate autophagy genes and boost longevity. Moreover, the overexpression of Gnmt is sufficient to extend lifespan and reduce methionine levels. Sarcosine, or methylglycine, declines with age in multiple species and is capable of inducing autophagy both in vitro and in vivo. Taken all together, existing evidence suggests that glycine prolongs life by mimicking methionine restriction and activating autophagy.


Assuntos
Glicina , Sarcosina , Ratos , Animais , Camundongos , Humanos , Glicina/metabolismo , Envelhecimento/metabolismo , Metionina/metabolismo , Longevidade , Glicina N-Metiltransferase/genética , Glicina N-Metiltransferase/metabolismo , Racemetionina , Mamíferos/metabolismo
4.
Rejuvenation Res ; 24(5): 377-389, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34486398

RESUMO

In our recent transcriptomic meta-analysis, we used random forest machine learning to accurately predict age in human blood, bone, brain, heart, and retina tissues given gene inputs. Although each tissue-specific model utilized a unique number of genes for age prediction, we found that the following six genes were prioritized in all five tissues: CHI3L2, CIDEC, FCGR3A, RPS4Y1, SLC11A1, and VTCN1. Since being selected for age prediction in multiple tissues is unique, we decided to explore these pan-tissue clock genes in greater detail. In the present study, we began by performing over-representation and network topology-based enrichment analyses in the Gene Ontology Biological Process database. These analyses revealed that the immunological terms "response to protozoan," "immune response," and "positive regulation of immune system process" were significantly enriched by these clock inputs. Expression analyses in mouse and human tissues identified that these inputs are frequently upregulated or downregulated with age. A detailed literature search showed that all six genes had noteworthy connections to age-related disease. For example, mice deficient in Cidec are protected against various metabolic defects, while suppressing VTCN1 inhibits age-related cancers in mouse models. Using a large multitissue transcriptomic dataset, we additionally generate a novel, minimalistic aging clock that can predict human age using just these six genes as inputs. Taken all together, these six genes are connected to diverse aspects of aging.


Assuntos
Envelhecimento , Aprendizado de Máquina , Envelhecimento/genética , Animais , Perfilação da Expressão Gênica , Ontologia Genética , Sistema Imunitário , Camundongos
5.
PLoS One ; 15(7): e0234986, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32634135

RESUMO

Glioblastoma is a common, malignant brain tumor whose disease incidence increases with age. Glioblastoma stem-like cells (GSCs) are thought to contribute to cancer therapy resistance and to be responsible for tumor initiation, maintenance, and recurrence. This study utilizes both SNP array and gene expression profiling to better understand GSCs and their relation to malignant disease. Peripheral blood and primary glioblastoma tumor tissue were obtained from patients, the latter of which was used to generate GSCs as well as a CD133pos./CD15pos. subpopulation. The stem cell features of GSCs were confirmed via the immunofluorescent expression of Nestin, SOX2, and CD133. Both tumor tissue and the isolated primary cells shared unique abnormal genomic characteristics, including a gain of chromosome 7 as well as either a partial or complete loss of chromosome 10. Individual genomic differences were also observed, including the loss of chromosome 4 and segmental uniparental disomy of 9p24.3→p21.3 in GSCs. Gene expression profiling revealed 418 genes upregulated in tumor tissue vs. CD133pos./CD15pos. cells and 44 genes upregulated in CD133pos./CD15pos. cells vs. tumor tissue. Pathway analyses demonstrated that upregulated genes in CD133pos./CD15pos. cells are relevant to cell cycle processes and cancerogenesis. In summary, we detected previously undescribed genomic and gene expression differences when comparing tumor tissue and isolated stem-like subpopulations.


Assuntos
Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Antígeno AC133/análise , Separação Celular/métodos , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Antígenos CD15/análise , Polimorfismo de Nucleotídeo Único/genética , Manejo de Espécimes , Regulação para Cima
6.
Aging Cell ; 18(6): e13048, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31560163

RESUMO

An emerging body of data suggests that lipid metabolism has an important role to play in the aging process. Indeed, a plethora of dietary, pharmacological, genetic, and surgical lipid-related interventions extend lifespan in nematodes, fruit flies, mice, and rats. For example, the impairment of genes involved in ceramide and sphingolipid synthesis extends lifespan in both worms and flies. The overexpression of fatty acid amide hydrolase or lysosomal lipase prolongs life in Caenorhabditis elegans, while the overexpression of diacylglycerol lipase enhances longevity in both C. elegans and Drosophila melanogaster. The surgical removal of adipose tissue extends lifespan in rats, and increased expression of apolipoprotein D enhances survival in both flies and mice. Mouse lifespan can be additionally extended by the genetic deletion of diacylglycerol acyltransferase 1, treatment with the steroid 17-α-estradiol, or a ketogenic diet. Moreover, deletion of the phospholipase A2 receptor improves various healthspan parameters in a progeria mouse model. Genome-wide association studies have found several lipid-related variants to be associated with human aging. For example, the epsilon 2 and epsilon 4 alleles of apolipoprotein E are associated with extreme longevity and late-onset neurodegenerative disease, respectively. In humans, blood triglyceride levels tend to increase, while blood lysophosphatidylcholine levels tend to decrease with age. Specific sphingolipid and phospholipid blood profiles have also been shown to change with age and are associated with exceptional human longevity. These data suggest that lipid-related interventions may improve human healthspan and that blood lipids likely represent a rich source of human aging biomarkers.


Assuntos
Envelhecimento/metabolismo , Metabolismo dos Lipídeos , Longevidade , Doenças Neurodegenerativas/metabolismo , Envelhecimento/genética , Animais , Humanos , Metabolismo dos Lipídeos/genética , Longevidade/genética , Doenças Neurodegenerativas/genética
7.
Stem Cells Transl Med ; 7(12): 867-875, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30218497

RESUMO

Now that induced pluripotent stem cell (iPSC)-based transplants have been performed in humans and organizations have begun producing clinical-grade iPSCs, it is imperative that strict quality control standards are agreed upon. This is essential as both ESCs and iPSCs have been shown to accumulate genomic aberrations during long-term culturing. These aberrations can include copy number variations, trisomy, amplifications of chromosomal regions, deletions of chromosomal regions, loss of heterozygosity, and epigenetic abnormalities. Moreover, although the differences between iPSCs and ESCs appear largely negligible when a high enough n number is used for comparison, the reprogramming process can generate further aberrations in iPSCs, including copy number variations and deletions in tumor-suppressor genes. If mutations or epigenetic signatures are present in parental cells, these can also be carried over into iPSCs. To maximize patient safety, we recommend a set of standards to be utilized when preparing iPSCs for clinical use. Reprogramming methods that do not involve genomic integration should be used. Cultured cells should be grown using feeder-free and serum-free systems to avoid animal contamination. Karyotyping, whole-genome sequencing, gene expression analyses, and standard sterility tests should all become routine quality control tests. Analysis of mitochondrial DNA integrity, whole-epigenome analyses, as well as single-cell genome sequencing of large cell populations may also prove beneficial. Furthermore, clinical-grade stem cells need to be produced under accepted regulatory good manufacturing process standards. The creation of haplobanks that provide major histocompatibility complex matching is also recommended to improve allogeneic stem cell engraftment. Stem Cells Translational Medicine 2018;7:867-875.


Assuntos
Células-Tronco Pluripotentes/metabolismo , Reprogramação Celular , Citogenética/normas , Variações do Número de Cópias de DNA , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes/citologia , Controle de Qualidade
8.
Stem Cell Res Ther ; 8(1): 85, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28420415

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) show therapeutic efficacy in many different age-related degenerative diseases, including Alzheimer's disease. Very little is currently known about whether or not aging impacts the transplantation efficiency of MSCs. METHODS: In this study, we investigated the distribution of intravenously transplanted syngeneic MSCs derived from young and aged mice into young, aged, and transgenic APP/PS1 Alzheimer's disease mice. MSCs from male donors were transplanted into female mice and their distribution pattern was monitored by PCR using Y-chromosome specific probes. Biodistribution of transplanted MSCs in the brains of APP/PS1 mice was additionally confirmed by immunofluorescence and confocal microscopy. RESULTS: Four weeks after transplantation into young mice, young MSCs were found in the lung, axillary lymph nodes, blood, kidney, bone marrow, spleen, liver, heart, and brain cortex. In contrast, young MSCs that were transplanted into aged mice were only found in the brain cortex. In both young and aged mouse recipients, transplantation of aged MSCs showed biodistribution only in the blood and spleen. Although young transplanted MSCs only showed neuronal distribution in the brain cortex in young mice, they exhibited a wide neuronal distribution pattern in the brains of APP/PS1 mice and were found in the cortex, cerebellum, hippocampus, olfactory bulb, and brainstem. The immunofluorescent signal of both transplanted MSCs and resident microglia was robust in the brains of APP/PS1 mice. Monocyte chemoattractant-1 levels were lowest in the brain cortex of young mice and were significantly increased in APP/PS1 mice. Within the hippocampus, monocyte chemoattractant-1 levels were significantly higher in aged mice compared with younger and APP/PS1 mice. CONCLUSIONS: We demonstrate in vivo that MSC biodistribution post transplantation is detrimentally affected by aging and neuronal health. Aging of both the recipient and the donor MSCs used attenuates transplantation efficiency. Clinically, our data would suggest that aged MSCs should not be used for transplantation and that transplantation of MSCs into aged patients will be less efficacious.


Assuntos
Doença de Alzheimer/terapia , Encéfalo/crescimento & desenvolvimento , Movimento Celular , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Neurônios/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Feminino , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Presenilinas/genética , Baço/citologia , Baço/crescimento & desenvolvimento , Baço/metabolismo
9.
Aging (Albany NY) ; 9(2): 340-352, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27638293

RESUMO

Adipose-derived mesenchymal stem cells (ADSCs) are multipotent stem cells that promote therapeutic effects and are frequently used in autologous applications. Little is known about how ADSCs respond to genotoxic stress and whether or not donor age affects DNA damage and repair. In this study, we used the comet assay to assess DNA damage and repair in human ADSCs derived from young (20-40 years), middle-aged (41-60 years), and older (61+ years) donors following treatment with H2O2 or UV light. Tail lengths in H2O2-treated ADSCs were substantially higher than the tail lengths in UV-treated ADSCs. After 30 minutes of treatment with H2O2, ADSCs preconditioned with alpha phenyl-tert-butyl nitrone (PBN) or ascorbic acid (AA) showed a significant reduction in % tail DNA. The majority of ADSCs treated with PBN or AA displayed low olive tail movements at various timepoints. In general and indicative of DNA repair, % tail length and % tail DNA peaked at 30 minutes and then decreased to near-control levels at the 2 hour and 4 hour timepoints. Differently aged ADSCs displayed comparable levels of DNA damage in the majority of these experiments, suggesting that the age of the donor does not affect the DNA damage response in cultured ADSCs.


Assuntos
Tecido Adiposo/citologia , Ácido Ascórbico/farmacologia , Óxidos N-Cíclicos/farmacologia , Peróxido de Hidrogênio/toxicidade , Células-Tronco Mesenquimais/efeitos dos fármacos , Óxidos de Nitrogênio/farmacologia , Raios Ultravioleta/efeitos adversos , Adulto , Envelhecimento , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos da radiação , Pessoa de Meia-Idade , Adulto Jovem
10.
Exp Cell Res ; 338(1): 97-104, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26335540

RESUMO

Mesenchymal stem cells (MSCs) are non-immunogenic, multipotent cells with at least trilineage differentiation potential. They promote wound healing, improve regeneration of injured tissue, and mediate numerous other health effects. MSCs migrate to sites of injury and stimulate repair either through direct differentiation or indirectly through the stimulation of endogenous repair mechanisms. Using the in vitro scratch assay, we show that the inflammatory cytokines, chemokines, and growth factors TNF-α, SDF-1, PDGF, and bFGF enhance migration of rat MSCs under normoxic conditions, while TNF-α, IFN-γ, PDGF, and bFGF promote MSC migration under hypoxic conditions. This indicates that the oxygen concentration affects how MSCs will migrate in response to specific factors and, consistent with this, differential expression of cytokines was observed under hypoxic versus normoxic conditions. Using the transwell migration assay, we find that TNF-α, IFN-γ, bFGF, IGF-1, PDGF, and SDF-1 significantly increase transmigration of rat MSCs compared to unstimulated medium. MSCs derived from aged rats exhibited comparable migration to MSCs derived from young rats under hypoxic and normoxic conditions, even after application with specific factors. Similarly, migration in MSCs from aged, human donors did not statistically differ compared to migration in MSCs derived from human umbilical cord tissue or younger donors.


Assuntos
Movimento Celular , Citocinas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Células-Tronco Mesenquimais/fisiologia , Envelhecimento , Animais , Diferenciação Celular , Hipóxia Celular , Células Cultivadas , Senescência Celular , Humanos , Oxigênio/fisiologia , Ratos Sprague-Dawley
11.
Invest Ophthalmol Vis Sci ; 56(8): 4619-30, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26200502

RESUMO

PURPOSE: Mutations in BEST1, encoding bestrophin-1 (Best1), cause autosomal recessive bestrophinopathy (ARB). Encoding bestrophin-1 is a pentameric anion channel localized to the basolateral plasma membrane of the RPE. Here, we characterize the effects of the mutations R141H (CGC > CAC) and I366fsX18 (c.1098_1100+7del), identified in a patient in our practice, on Best1 trafficking, oligomerization, and channel activity. METHODS: Currents of Cl- were assessed in transfected HEK293 cells using whole-cell patch clamp. Best1 localization was assessed by confocal microscopy in differentiated, human-induced pluripotent stem cell-derived RPE (iPSC-RPE) cells following expression of mutants via adenovirus-mediated gene transfer. Oligomerization was evaluated by coimmunoprecipitation in iPSC-RPE and MDCK cells. RESULTS: Compared to Best1, Best1 I366fsX18 currents were increased while Best1 R141H Cl- currents were diminished. Coexpression of Best1 R141H with Best1 or Best1 I366fsX18 resulted in rescued channel activity. Overexpressed Best1, Best1 R141H, and Best1 I366fsX18 were all properly localized in iPSC-RPE cells; Best1 R141H and Best1 I366fsX18 coimmunoprecipitated with endogenous Best1 in iPSC-RPE cells and with each other in MDCK cells. CONCLUSIONS: The first 366 amino acids of Best1 are sufficient to mediate channel activity and homo-oligomerization. The combination of Best1 and Best1 R141H does not cause disease, while Best1 R141H together with Best1 I366fsX18 causes ARB. Since both combinations generate comparable Cl- currents, this indicates that ARB in this patient is not caused by a loss of channel activity. Moreover, Best1 I366fsX18 differs from Best1 in that it lacks most of the cytosolic C-terminal domain, suggesting that the loss of this region contributes significantly to the pathogenesis of ARB in this patient.


Assuntos
Canais de Cloreto/genética , DNA/genética , Oftalmopatias Hereditárias/genética , Proteínas do Olho/genética , Regulação da Expressão Gênica , Mutação , Doenças Retinianas/genética , Epitélio Pigmentado da Retina/ultraestrutura , Adolescente , Bestrofinas , Western Blotting , Membrana Celular/metabolismo , Canais de Cloreto/biossíntese , Canais de Cloreto/metabolismo , Análise Mutacional de DNA , Oftalmopatias Hereditárias/metabolismo , Oftalmopatias Hereditárias/patologia , Proteínas do Olho/biossíntese , Feminino , Angiofluoresceinografia , Fundo de Olho , Genes Recessivos , Células HEK293/metabolismo , Células HEK293/ultraestrutura , Humanos , Microscopia Confocal , Microscopia Eletrônica , Microscopia de Fluorescência , Técnicas de Patch-Clamp , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Epitélio Pigmentado da Retina/metabolismo
12.
Transl Vis Sci Technol ; 4(3): 2, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26046004

RESUMO

PURPOSE: A previous report demonstrated antibodies to bestrophin in paraneoplastic exudative polymorphous vitelliform maculopathy (PEPVM). Other cases demonstrated antibodies to different proteins in the retinal pigment epithelium (RPE). In this report, serum was analyzed to determine whether a patient with PEPVM and a reduced Arden ratio had developed autoantibodies to human Bestrophin-1 (Best1). METHODS: Human embryonic kidney 293 cells (HEK293) were transfected with Best1 and stained with an antibody specific to Best1 (E6-6), or patient serum. Staining patterns were compared with those of untransfected cells stained with E6-6, patient serum, control serum, or secondary antibody alone. Western blots were performed using lysed RPE and stained with E6-6, patient serum, control serum, or secondary antibody alone. RESULTS: Immunofluorescence staining of HEK-293 cells or HEK-293 cells expressing Best1 did not differ between patient and control sera or show a staining pattern consistent with recognition of Best1. Immunoblotting of human RPE lysate with patient serum did not identify Best1 (68 kDa) but did recognize a band at approximately 48 kDa that was absent in blots using control serum. CONCLUSIONS: To our knowledge, this is the first report of PEPVM with an autoantibody to an approximately 48-kDa RPE protein, but previous reports have demonstrated autoantibodies to other RPE proteins, suggesting that autoantibody formation is an important component of PEPVM. TRANSLATIONAL RELEVANCE: This research emphasizes the role that autoantibodies play in PEPVM. The fact that different autoantibodies appear to cause similar patterns demonstrates the heterogeneity of causes of vitelliform lesions.

13.
Rejuvenation Res ; 18(5): 473-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25848933

RESUMO

Resveratrol, a plant polyphenol present in grape skins, has been theorized to account for the "French Paradox" by explaining how red wine may decrease the health risks associated with unhealthy diets. Resveratrol has been reported to extend life span in several different species. Other studies, however, have failed to find a resveratrol-induced life span effect. A recent meta-study analyzing previously published survival data concluded that, although resveratrol reliably and reproducibly extends life span in some species, its life span effects show diminished reliability in other organisms. The data are mixed, and it remains unclear how evolutionarily conserved resveratrol's effects on life span are. To gain further insight into this controversy, we studied the effects of various concentrations (200 µM, 100 µM, 50 µM, or 0 µM) of orally fed resveratrol on the life span of the mosquito Anopheles stephensi, an important vector of human malaria, under two different feeding treatments--sugar-fed only or sugar-fed with intermittent blood meals. Each treatment was repeated three times and both survivorship and mortality rates were analyzed for each replicate. For the majority of experiments, resveratrol failed to mediate a statistically significant effect on life span. Although there was one instance where resveratrol significantly increased life span, there were five other instances where resveratrol significantly decreased life span. We conclude from these data that, under normal conditions, resveratrol does not extend life span in A. stephensi.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Longevidade/efeitos dos fármacos , Estilbenos/farmacologia , Animais , Carboidratos/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Feminino , Resveratrol
14.
Mol Vis ; 21: 347-59, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25878489

RESUMO

PURPOSE: Mutations in BEST1, encoding Bestrophin-1 (Best1), cause Best vitelliform macular dystrophy (BVMD) and other inherited retinal degenerative diseases. Best1 is an integral membrane protein localized to the basolateral plasma membrane of the retinal pigment epithelium (RPE). Data from numerous in vitro and in vivo models have demonstrated that Best1 regulates intracellular Ca2+ levels. Although it is known from in vitro and crystal structure data that Best1 is also a calcium-activated anion channel, evidence for Best1 functioning as a channel in human RPE is lacking. To assess Best1-associated channel activity in the RPE, we examined the transepithelial electrical properties of fetal human RPE (fhRPE) cells, which express endogenous Best1. METHODS: Using adenovirus-mediated gene transfer, we overexpressed Best1 and the BVMD mutant Best1W93C in fhRPE cells and assessed resting transepithelial potential (TEP), transepithelial resistance, short circuit current (Isc), and intracellular Ca2+ levels. Cl- currents were directly measured in transfected HEK293 cells using whole-cell patch clamp. RESULTS: Best1W93C showed ablated Cl- currents and, when co-expressed, suppressed the channel activity of Best1 in HEK293 cells. In fhRPE, overexpression of Best1 increased TEP and Isc, while Best1W93C diminished TEP and Isc. Substitution of Cl- in the bath media resulted in a significant reduction of Isc in monolayers overexpressing Best1, but no significant Isc change in monolayers expressing Best1W93C. We removed Ca2+ as a limit on transepithelial electrical properties by treating cells with ionomycin, and found that changes in Isc and TEP for monolayers expressing Best1 were absent in monolayers expressing Best1W93C. Similarly, inhibition of calcium-activated anion channels with niflumic acid reduced both Isc and TEP of control and Best1 monolayers, but did not notably affect Best1W93C monolayers. Stimulation with extracellular ATP induced an increase in TEP in control monolayers that was greater than that observed in those expressing Best1(W93C). Examination of [Ca2+]i following ATP stimulation demonstrated that the expression of Best1W93C impaired intracellular Ca2+ signaling. CONCLUSIONS: These data indicate that Best1 activity strongly influences electrophysiology and Ca2+ signaling in RPE cells, and that a common BVMD mutation disrupts both of these parameters. Our findings support the hypothesis that Best1 functions as an anion channel in human RPE.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Membrana Celular/metabolismo , Canais de Cloreto/metabolismo , Células Epiteliais/metabolismo , Proteínas do Olho/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Trifosfato de Adenosina/farmacologia , Adenovírus Humanos/genética , Bestrofinas , Membrana Celular/efeitos dos fármacos , Canais de Cloreto/genética , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Proteínas do Olho/genética , Feto , Expressão Gênica , Vetores Genéticos , Células HEK293 , Humanos , Transporte de Íons/efeitos dos fármacos , Ionomicina/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Mutação , Ácido Niflúmico/farmacologia , Técnicas de Patch-Clamp , Cultura Primária de Células , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Transfecção , Distrofia Macular Viteliforme/genética , Distrofia Macular Viteliforme/metabolismo , Distrofia Macular Viteliforme/patologia
15.
Exp Eye Res ; 121: 74-85, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24560797

RESUMO

BEST1 encodes Bestrophin-1 (Best1), a homo-oligomeric, integral membrane protein localized to the basolateral plasma membrane of the retinal pigment epithelium. Mutations in BEST1 cause five distinct retinal degenerative diseases, including adult vitelliform macular dystrophy (AVMD), autosomal recessive bestrophinopathy (ARB), autosomal dominant vitreoretinochoroidopathy (ADVIRC), and retinitis pigmentosa (RP). The mechanisms underlying these diseases and why mutations cause one disease over another are, for the most part, unknown. To gain insights into these four diseases, we expressed 28 Best1 mutants fused to YFP in polarized MDCK monolayers and, via confocal microscopy and immunofluorescence, live-cell FRET, and reciprocal co-immunoprecipitation experiments, screened these mutants for defects in localization and oligomerization. All 28 mutants exhibited comparable FRET efficiencies to and co-immunoprecipitated with WT Best1, indicating unimpaired oligomerization. RP- and ADVIRC-associated mutants were properly localized to the basolateral plasma membrane of cells, while two AVMD and most ARB mutants were mislocalized. When co-expressed, all mislocalized mutants caused mislocalization of WT Best1 to intracellular compartments. Our current and past results indicate that mislocalization of Best1 is not an absolute feature of any individual bestrophinopathy, occurring in AVMD, BVMD, and ARB. Furthermore, some ARB mutants that do not also cause dominant disease cause mislocalization of Best1, indicating that mislocalization is not a cause of disease, and that absence of Best1 activity from the plasma membrane is tolerated. Lastly, we find that the ARB truncation mutants L174Qfs*57 and R200X can form oligomers with WT Best1, indicating that the first ∼174 amino acids of Best1 are sufficient for oligomerization to occur.


Assuntos
Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Oftalmopatias Hereditárias/genética , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Mutação de Sentido Incorreto , Multimerização Proteica/fisiologia , Doenças Retinianas/genética , Adenoviridae/genética , Animais , Proteínas de Bactérias/metabolismo , Bestrofinas , Western Blotting , Doenças da Coroide/genética , Doenças da Coroide/metabolismo , Cães , Eletrofisiologia , Oftalmopatias Hereditárias/metabolismo , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/metabolismo , Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Proteínas Luminescentes/metabolismo , Células Madin Darby de Rim Canino/metabolismo , Microscopia Confocal , Técnicas de Patch-Clamp , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Doenças Retinianas/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Transfecção , Distrofia Macular Viteliforme/genética , Distrofia Macular Viteliforme/metabolismo
16.
PLoS One ; 8(12): e82301, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367514

RESUMO

Myocilin is a broadly expressed protein that when mutated uniquely causes glaucoma. While no function has been ascribed to explain focal disease, some properties of myocilin are known. Myocilin is a cytoplasmic protein that also localizes to vesicles specifically as part of a large membrane-associated complex with properties similar to the SNARE machinery that function in vesicle fusion. Its role in vesicle dynamics has not been detailed, however myocilin intersects with the endocytic compartment at the level of the multivesicular body. Since internalized GPCRs are sorted in the multivesicular body, we investigated whether myocilin functions in ligand-dependent GPR143 endocytosis. Using recombinant systems we found that the kinetics of myocilin recruitment to biotinylated membrane proteins was similar to that of arrestin-3. We also co-localized myocilin with GPR143 and Arrestin-2 by confocal microscopy. However, wild-type myocilin differed significantly in its association kinetics and co-localization with internalized proteins from mutant myocilin (P370L or T377M). Moreover, we found that myocilin bound to the cytoplasmic tail of GPR143, an interaction mediated by its amino terminal helix-turn-helix domain. Hydrodynamic analyses show that the myocilin-GPR143 protein complex is >158 kD and stable in 500 mM KCl, but not 0.1% SDS. Collectively, data indicate that myocilin is recruited to the membrane compartment, interacting with GPCR proteins during ligand-mediated endocytosis and that GPCR signaling underlies pathology in myocilin glaucoma.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Endocitose/fisiologia , Proteínas do Olho/metabolismo , Glicoproteínas/metabolismo , Animais , Arrestina/genética , Arrestina/metabolismo , Western Blotting , Células CHO , Células COS , Cricetulus , Proteínas do Citoesqueleto/genética , Endocitose/genética , Proteínas do Olho/genética , Glicoproteínas/genética , Humanos , Células MCF-7 , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microscopia Confocal
17.
Rejuvenation Res ; 15(5): 483-94, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23098078

RESUMO

DNA methylation is a major control program that modulates gene expression in a plethora of organisms. Gene silencing through methylation occurs through the activity of DNA methyltransferases, enzymes that transfer a methyl group from S-adenosyl-L-methionine to the carbon 5 position of cytosine. DNA methylation patterns are established by the de novo DNA methyltransferases (DNMTs) DNMT3A and DNMT3B and are subsequently maintained by DNMT1. Aging and age-related diseases include defined changes in 5-methylcytosine content and are generally characterized by genome-wide hypomethylation and promoter-specific hypermethylation. These changes in the epigenetic landscape represent potential disease biomarkers and are thought to contribute to age-related pathologies, such as cancer, osteoarthritis, and neurodegeneration. Some diseases, such as a hereditary form of sensory neuropathy accompanied by dementia, are directly caused by methylomic changes. Epigenetic modifications, however, are reversible and are therefore a prime target for therapeutic intervention. Numerous drugs that specifically target DNMTs are being tested in ongoing clinical trials for a variety of cancers, and data from finished trials demonstrate that some, such as 5-azacytidine, may even be superior to standard care. DNMTs, demethylases, and associated partners are dynamically shaping the methylome and demonstrate great promise with regard to rejuvenation.


Assuntos
Envelhecimento/fisiologia , Metilação de DNA , Rejuvenescimento/fisiologia , Envelhecimento/genética , Animais , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Epigênese Genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA