Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
bioRxiv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645893

RESUMO

Tumors may contain billions of cells including distinct malignant clones and nonmalignant cell types. Clarifying the evolutionary histories, prevalence, and defining molecular features of these cells is essential for improving clinical outcomes, since intratumoral heterogeneity provides fuel for acquired resistance to targeted therapies. Here we present a statistically motivated strategy for deconstructing intratumoral heterogeneity through multiomic and multiscale analysis of serial tumor sections (MOMA). By combining deep sampling of IDH-mutant astrocytomas with integrative analysis of single-nucleotide variants, copy-number variants, and gene expression, we reconstruct and validate the phylogenies, spatial distributions, and transcriptional profiles of distinct malignant clones. By genotyping nuclei analyzed by single-nucleus RNA-seq for truncal mutations, we further show that commonly used algorithms for identifying cancer cells from single-cell transcriptomes may be inaccurate. We also demonstrate that correlating gene expression with tumor purity in bulk samples can reveal optimal markers of malignant cells and use this approach to identify a core set of genes that is consistently expressed by astrocytoma truncal clones, including AKR1C3, whose expression is associated with poor outcomes in several types of cancer. In summary, MOMA provides a robust and flexible strategy for precisely deconstructing intratumoral heterogeneity and clarifying the core molecular properties of distinct cellular populations in solid tumors.

2.
Cell Rep Med ; 3(2): 100525, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35243422

RESUMO

Mechanisms of therapeutic resistance and vulnerability evolve in metastatic cancers as tumor cells and extrinsic microenvironmental influences change during treatment. To support the development of methods for identifying these mechanisms in individual people, here we present an omic and multidimensional spatial (OMS) atlas generated from four serial biopsies of an individual with metastatic breast cancer during 3.5 years of therapy. This resource links detailed, longitudinal clinical metadata that includes treatment times and doses, anatomic imaging, and blood-based response measurements to clinical and exploratory analyses, which includes comprehensive DNA, RNA, and protein profiles; images of multiplexed immunostaining; and 2- and 3-dimensional scanning electron micrographs. These data report aspects of heterogeneity and evolution of the cancer genome, signaling pathways, immune microenvironment, cellular composition and organization, and ultrastructure. We present illustrative examples of how integrative analyses of these data reveal potential mechanisms of response and resistance and suggest novel therapeutic vulnerabilities.


Assuntos
Neoplasias da Mama , Biópsia , Neoplasias da Mama/genética , Feminino , Humanos , Microambiente Tumoral/genética
3.
NPJ Precis Oncol ; 5(1): 28, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772089

RESUMO

Molecular heterogeneity in metastatic breast cancer presents multiple clinical challenges in accurately characterizing and treating the disease. Current diagnostic approaches offer limited ability to assess heterogeneity that exists among multiple metastatic lesions throughout the treatment course. We developed a precision oncology platform that combines serial biopsies, multi-omic analysis, longitudinal patient monitoring, and molecular tumor boards, with the goal of improving cancer management through enhanced understanding of the entire cancer ecosystem within each patient. We describe this integrative approach using comprehensive analytics generated from serial-biopsied lesions in a metastatic breast cancer patient. The serial biopsies identified remarkable heterogeneity among metastatic lesions that presented clinically as discordance in receptor status and genomic alterations with mixed treatment response. Based on our study, we highlight clinical scenarios, such as rapid progression or mixed response, that indicate consideration for repeat biopsies to evaluate intermetastatic heterogeneity (IMH), with the objective of refining targeted therapy. We present a framework for understanding the clinical significance of heterogeneity in breast cancer between metastatic lesions utilizing multi-omic analyses of serial biopsies and its implication for effective personalized treatment.

4.
Sci Rep ; 10(1): 17507, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060677

RESUMO

Spatially-resolved molecular profiling by immunostaining tissue sections is a key feature in cancer diagnosis, subtyping, and treatment, where it complements routine histopathological evaluation by clarifying tumor phenotypes. In this work, we present a deep learning-based method called speedy histological-to-immunofluorescent translation (SHIFT) which takes histologic images of hematoxylin and eosin (H&E)-stained tissue as input, then in near-real time returns inferred virtual immunofluorescence (IF) images that estimate the underlying distribution of the tumor cell marker pan-cytokeratin (panCK). To build a dataset suitable for learning this task, we developed a serial staining protocol which allows IF and H&E images from the same tissue to be spatially registered. We show that deep learning-extracted morphological feature representations of histological images can guide representative sample selection, which improved SHIFT generalizability in a small but heterogenous set of human pancreatic cancer samples. With validation in larger cohorts, SHIFT could serve as an efficient preliminary, auxiliary, or substitute for panCK IF by delivering virtual panCK IF images for a fraction of the cost and in a fraction of the time required by traditional IF.


Assuntos
Corantes/química , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Actinas/análise , Idoso , Algoritmos , Biomarcadores Tumorais/análise , Feminino , Humanos , Queratinas/análise , Microscopia de Fluorescência , Pessoa de Meia-Idade , Neoplasias Pancreáticas/patologia , Fenótipo , Coloração e Rotulagem
5.
Cancer Cell ; 28(3): 307-317, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26373278

RESUMO

The evolutionary history of tumor cell populations can be reconstructed from patterns of genetic alterations. In contrast to stable genetic events, epigenetic states are reversible and sensitive to the microenvironment, prompting the question whether epigenetic information can similarly be used to discover tumor phylogeny. We examined the spatial and temporal dynamics of DNA methylation in a cohort of low-grade gliomas and their patient-matched recurrences. Genes transcriptionally upregulated through promoter hypomethylation during malignant progression to high-grade glioblastoma were enriched in cell cycle function, evolving in parallel with genetic alterations that deregulate the G1/S cell cycle checkpoint. Moreover, phyloepigenetic relationships robustly recapitulated phylogenetic patterns inferred from somatic mutations. These findings highlight widespread co-dependency of genetic and epigenetic events throughout brain tumor evolution.


Assuntos
Neoplasias Encefálicas/genética , Metilação de DNA/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Mutação/genética , Epigênese Genética/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/genética , Glioma/genética , Humanos , Filogenia , Regiões Promotoras Genéticas/genética , Transcrição Gênica/genética , Regulação para Cima/genética
6.
Acta Neuropathol ; 129(4): 597-607, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25724300

RESUMO

Temozolomide (TMZ) increases the overall survival of patients with glioblastoma (GBM), but its role in the clinical management of diffuse low-grade gliomas (LGG) is still being defined. DNA hypermethylation of the O (6) -methylguanine-DNA methyltransferase (MGMT) promoter is associated with an improved response to TMZ treatment, while inactivation of the DNA mismatch repair (MMR) pathway is associated with therapeutic resistance and TMZ-induced mutagenesis. We previously demonstrated that TMZ treatment of LGG induces driver mutations in the RB and AKT-mTOR pathways, which may drive malignant progression to secondary GBM. To better understand the mechanisms underlying TMZ-induced mutagenesis and malignant progression, we explored the evolution of MGMT methylation and genetic alterations affecting MMR genes in a cohort of 34 treatment-naïve LGGs and their recurrences. Recurrences with TMZ-associated hypermutation had increased MGMT methylation compared to their untreated initial tumors and higher overall MGMT methylation compared to TMZ-treated non-hypermutated recurrences. A TMZ-associated mutation in one or more MMR genes was observed in five out of six TMZ-treated hypermutated recurrences. In two cases, pre-existing heterozygous deletions encompassing MGMT, or an MMR gene, were followed by TMZ-associated mutations in one of the genes of interest. These results suggest that tumor cells with methylated MGMT may undergo positive selection during TMZ treatment in the context of MMR deficiency.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/complicações , Distúrbios no Reparo do DNA/tratamento farmacológico , Dacarbazina/análogos & derivados , Glioma/complicações , Neoplasias Encefálicas/tratamento farmacológico , Estudos de Coortes , Metilação de DNA/efeitos dos fármacos , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Distúrbios no Reparo do DNA/etiologia , Dacarbazina/uso terapêutico , Progressão da Doença , Feminino , Glioma/tratamento farmacológico , Humanos , Masculino , Mutação/genética , Receptores Imunológicos/genética , Estatísticas não Paramétricas , Temozolomida , Proteínas Supressoras de Tumor/genética
7.
Genome Res ; 24(5): 761-74, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24709822

RESUMO

Aberrant DNA hypomethylation may play an important role in the growth rate of glioblastoma (GBM), but the functional impact on transcription remains poorly understood. We assayed the GBM methylome with MeDIP-seq and MRE-seq, adjusting for copy number differences, in a small set of non-glioma CpG island methylator phenotype (non-G-CIMP) primary tumors. Recurrent hypomethylated loci were enriched within a region of chromosome 5p15 that is specified as a cancer amplicon and also encompasses TERT, encoding telomerase reverse transcriptase, which plays a critical role in tumorigenesis. Overall, 76 gene body promoters were recurrently hypomethylated, including TERT and the oncogenes GLI3 and TP73. Recurring hypomethylation also affected previously unannotated alternative promoters, and luciferase reporter assays for three of four of these promoters confirmed strong promoter activity in GBM cells. Histone H3 lysine 4 trimethylation (H3K4me3) ChIP-seq on tissue from the GBMs uncovered peaks that coincide precisely with tumor-specific decrease of DNA methylation at 200 loci, 133 of which are in gene bodies. Detailed investigation of TP73 and TERT gene body hypomethylation demonstrated increased expression of corresponding alternate transcripts, which in TP73 encodes a truncated p73 protein with oncogenic function and in TERT encodes a putative reverse transcriptase-null protein. Our findings suggest that recurring gene body promoter hypomethylation events, along with histone H3K4 trimethylation, alter the transcriptional landscape of GBM through the activation of a limited number of normally silenced promoters within gene bodies, in at least one case leading to expression of an oncogenic protein.


Assuntos
Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Mutação , Regiões Promotoras Genéticas , Ilhas de CpG , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Telomerase/genética , Telomerase/metabolismo , Ativação Transcricional , Proteína Tumoral p73 , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína Gli3 com Dedos de Zinco
8.
Science ; 343(6167): 189-193, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24336570

RESUMO

Tumor recurrence is a leading cause of cancer mortality. Therapies for recurrent disease may fail, at least in part, because the genomic alterations driving the growth of recurrences are distinct from those in the initial tumor. To explore this hypothesis, we sequenced the exomes of 23 initial low-grade gliomas and recurrent tumors resected from the same patients. In 43% of cases, at least half of the mutations in the initial tumor were undetected at recurrence, including driver mutations in TP53, ATRX, SMARCA4, and BRAF; this suggests that recurrent tumors are often seeded by cells derived from the initial tumor at a very early stage of their evolution. Notably, tumors from 6 of 10 patients treated with the chemotherapeutic drug temozolomide (TMZ) followed an alternative evolutionary path to high-grade glioma. At recurrence, these tumors were hypermutated and harbored driver mutations in the RB (retinoblastoma) and Akt-mTOR (mammalian target of rapamycin) pathways that bore the signature of TMZ-induced mutagenesis.


Assuntos
Antineoplásicos Alquilantes/efeitos adversos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Dacarbazina/análogos & derivados , Glioma/tratamento farmacológico , Glioma/patologia , Recidiva Local de Neoplasia/induzido quimicamente , Recidiva Local de Neoplasia/genética , Antineoplásicos Alquilantes/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Neoplasias Encefálicas/genética , DNA Helicases/genética , Análise Mutacional de DNA , Dacarbazina/efeitos adversos , Dacarbazina/uso terapêutico , Glioma/genética , Humanos , Mutagênese/efeitos dos fármacos , Gradação de Tumores , Recidiva Local de Neoplasia/tratamento farmacológico , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-akt/genética , Serina-Treonina Quinases TOR/genética , Temozolomida , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética , Proteína Nuclear Ligada ao X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA