Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hepatol ; 74(1): 156-167, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32763266

RESUMO

BACKGROUND & AIMS: Increased hepatocyte death contributes to the pathology of acute and chronic liver diseases. However, the role of hepatocyte pyroptosis and extracellular inflammasome release in liver disease is unknown. METHODS: We used primary mouse and human hepatocytes, hepatocyte-specific leucine 351 to proline Nlrp3KICreA mice, and GsdmdKO mice to investigate pyroptotic cell death in hepatocytes and its impact on liver inflammation and damage. Extracellular NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasomes were isolated from mutant NLRP3-YFP HEK cells and internalisation was studied in LX2 and primary human hepatic stellate cells. We also examined a cohort of 154 adult patients with biopsy-proven non-alcoholic fatty liver disease (Sir Charles Gairdner Hospital, Nedlands, Western Australia). RESULTS: We demonstrated that primary mouse and human hepatocytes can undergo pyroptosis upon NLRP3 inflammasome activation with subsequent release of NLRP3 inflammasome proteins that amplify and perpetuate inflammasome-driven fibrogenesis. Pyroptosis was inhibited by blocking caspase-1 and gasdermin D activation. The activated form of caspase-1 was detected in the livers and in serum from patients with non-alcoholic steatohepatitis and correlated with disease severity. Nlrp3KICreA mice showed spontaneous liver fibrosis under normal chow diet, and increased sensitivity to liver damage and inflammation after treatment with low dose lipopolysaccharide. Mechanistically, hepatic stellate cells engulfed extracellular NLRP3 inflammasome particles leading to increased IL-1ß secretion and α-smooth muscle actin expression. This effect was abrogated when cells were pre-treated with the endocytosis inhibitor cytochalasin B. CONCLUSIONS: These results identify hepatocyte pyroptosis and release of inflammasome components as a novel mechanism to propagate liver injury and liver fibrosis development. LAY SUMMARY: Our findings identify a novel mechanism of inflammation in the liver. Experiments in cell cultures, mice, and human samples show that a specific form of cell death, called pyroptosis, leads to the release of complex inflammatory particles, the NLRP3 inflammasome, from inside hepatocytes into the extracellular space. From there they are taken up by other cells and thereby mediate inflammatory and pro-fibrogenic stress signals. The discovery of this mechanism may lead to novel treatments for chronic liver diseases in the future.


Assuntos
Hepatócitos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Cirrose Hepática , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/imunologia , Animais , Caspase 1/metabolismo , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Cirrose Hepática/imunologia , Cirrose Hepática/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Sistemas de Translocação de Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Mol Ther ; 28(2): 653-663, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31585800

RESUMO

The granulocyte-specific microRNA-223 (miR-223) has recently emerged as a negative regulator of NOD-like receptor 3 (NLRP3) expression, a central key player in chronic hepatic injuries such as fibrotic nonalcoholic steatohepatitis (NASH), as well as in other liver conditions including acute hepatitis. In this study, we evaluated the therapeutic effect of the synthetic miR-223 analog miR-223 3p in a murine model of lipopolysaccharide (LPS)/D-GalN-induced endotoxin acute hepatitis (EAH) or fibrotic NASH resultant of long-term feeding with a high-fat, fructose, and cholesterol (FFC) diet. miR-223 3p ameliorated the infiltration of monocytes, neutrophils, and early activated macrophages and downregulated the transcriptional expression of the pro-inflammatory cytokines Il6 and Il12 and the chemokines Ccl2, Ccl3, Cxcl1, and Cxcl2 in EAH. In fibrotic NASH, treatment with miR-223 3p led to a remarkable mitigation of fibrosis development and activation of hepatic stellate cells (HSCs). miR-223 3p disrupted the activation of the NLRP3 inflammasome by impairing the synthesis of cleaved interleukin-1ß (IL-1ß), mature IL-1ß, and NLRP3, and the activation of caspase-1 p10 in both EAH and fibrotic NASH. Our data enlightens miR-223 3p as a post-transcriptional approach to treat acute and chronic hepatitis by silencing the activation of the NLRP3 inflammasome.


Assuntos
Inflamassomos/metabolismo , Hepatopatias/etiologia , Hepatopatias/metabolismo , MicroRNAs/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Interferência de RNA , Animais , Biomarcadores , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Lipopolissacarídeos/efeitos adversos , Hepatopatias/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
3.
J Clin Invest ; 129(10): 4091-4109, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31295147

RESUMO

Persistent, unresolved inflammation in the liver represents a key trigger for hepatic injury and fibrosis in various liver diseases and is controlled by classically activated pro-inflammatory macrophages, while restorative macrophages of the liver are capable of reversing inflammation once the injury trigger ceases. Here we have identified a novel role for neutrophils as key contributors to resolving the inflammatory response in the liver. Using two models of liver inflammatory resolution, we found that mice undergoing neutrophil depletion during the resolution phase exhibited unresolved hepatic inflammation, activation of the fibrogenic machinery and early fibrosis. These findings were associated with an impairment of the phenotypic switch of pro-inflammatory macrophages into a restorative stage after removal of the cause of injury and an increased NLRP3 / miR-223 ratio. Mice with a deletion of the granulocyte specific miR-223 gene showed a similarly impaired resolution profile that could be reversed by restoring miR-223 levels using a miR-223 3p mimic or infusing neutrophils from wildtype animals. Collectively, our findings reveal a novel role for neutrophils in the liver as resolving effector cells that induce pro-inflammatory macrophages into a restorative phenotype, potentially via miR-223.


Assuntos
Cirrose Hepática/metabolismo , Fígado/metabolismo , MicroRNAs/metabolismo , Neutrófilos/metabolismo , Animais , Feminino , Inflamação/metabolismo , Inflamação/patologia , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neutrófilos/patologia
4.
Hepatology ; 69(2): 845-859, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30180270

RESUMO

The NLR family pyrin domain-containing 3 (NLRP3) inflammasome plays an important role in liver fibrosis (LF) development. However, the mechanisms involved in NLRP3-induced fibrosis are unclear. Our aim was to test the hypothesis that the NLRP3 inflammasome in hepatic stellate cells (HSCs) can directly regulate their activation and contribute to LF. Primary HSCs isolated from wild-type (WT), Nlrp3-/- , or Nlrp3L351PneoR knock-in crossed to inducible (estrogen receptor Cre-CreT) mice were incubated with lipopolysaccharide (LPS) and adenosine triphosphate (ATP), or 4OH-tamoxifen, respectively. HSC-specific Nlrp3L351P knock-in mice were generated by crossing transgenic mice expressing lecithin retinol acyltransferase (Lrat)-driven Cre and maintained on standard rodent chow for 6 months. Mice were then sacrificed; liver tissue and serum were harvested. Nlrp3 inflammasome activation along with HSC phenotype and fibrosis were assessed by RT-PCR, western blotting, fluorescence-activated cell sorting (FACS), enzyme-linked immunosorbent assay, immunofluorescence (IF), and immunohistochemistry (IHC). Stimulated WT HSCs displayed increased levels of NLRP3 inflammasome-induced reactive oxygen species (ROS) production and cathepsin B activity, accompanied by an up-regulation of mRNA and protein levels of fibrotic makers, an effect abrogated in Nlrp3-/- HSCs. Nlrp3L351P CreT HSCs also showed elevated mRNA and protein expression of fibrotic markers 24 hours after inflammasome activation induced with 4-hydroxytamoxifen (4OHT). Protein and mRNA expression levels of fibrotic markers were also found to be increased in isolated HSCs and whole liver tissue from Nlrp3L351P Lrat Cre mice compared to WT. Liver sections from 24-week-old NlrpL351P Lrat Cre mice showed fibrotic changes with increased alpha smooth muscle actin (αSMA) and desmin-positive cells and collagen deposition, independent of inflammatory infiltrates; these changes were also observed after LPS challenge in 8-week-old NlrpL351P Lrat Cre mice. Conclusion: Our results highlight a direct role for the NLRP3 inflammasome in the activation of HSCs directly triggering LF.


Assuntos
Células Estreladas do Fígado/metabolismo , Inflamassomos/metabolismo , Cirrose Hepática/etiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Biomarcadores/metabolismo , Feminino , Lipopolissacarídeos , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miofibroblastos/metabolismo
5.
Hepatology ; 67(2): 736-749, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28902427

RESUMO

The NLRP3 inflammasome, a caspase-1 activation platform, plays a key role in the modulation of liver inflammation and fibrosis. Here, we tested the hypothesis that interleukin 17 (IL-17) and tumor necrosis factor (TNF) are key cytokines involved in amplifying and perpetuating the liver damage and fibrosis resulting from NLRP3 activation. To address this hypothesis, gain-of-function Nlrp3A350V knock-in mice were bred onto il17a and Tnf knockout backgrounds allowing for constitutive Nlrp3 activation in myeloid derived cells in mice deficient in IL-17 or TNF. Livers of Nlrp3A350V knock-in mice exhibited severe liver inflammatory changes characterized by infiltration with neutrophils, increased expression of chemokine (C-X-C motif) ligand (CXCL) 1 and CXCL2 chemokines, activated inflammatory macrophages, and elevated levels of IL-17 and TNF. Mutants with ablation of il17a signal showed fewer neutrophils when compared to intact Nlrp3A350V mutants, but still significant inflammatory changes when compared to the nonmutant il17a knockout littermates. The severe inflammatory changes associated with mutant Nlrp3 were almost completely rescued by Tnf knockout in association with a marked decrease in circulating IL-1ß levels. Intact Nlrp3A350V mutants showed changes in liver fibrosis, as evidenced by morphometric quantitation of Sirius Red staining and increased mRNA levels of profibrotic genes, including connective tissue growth factor and tissue inhibitor of matrix metalloproteinase 1. Il17a lacking mutants exhibited amelioration of the aforementioned fibrosis, whereas Tnf-deficient mutants showed no signs of fibrosis when compared to littermate controls. Conclusion: Our study uncovers key roles for TNF and, to a lesser extent, IL-17 as mediators of liver inflammation and fibrosis induced by constitutive NLRP3 inflammasome activation in myeloid-derived cells. These findings may lead to therapeutic strategies aimed at halting the progression of liver injury and fibrogenesis in various liver pathogeneses driven by NLRP3 activation. (Hepatology 2018;67:736-749).


Assuntos
Hepatite/etiologia , Interleucina-17/fisiologia , Cirrose Hepática Experimental/etiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Células Estreladas do Fígado/fisiologia , Macrófagos/fisiologia , Camundongos , Infiltração de Neutrófilos , Transdução de Sinais
6.
J Clin Invest ; 127(12): 4488-4497, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29130929

RESUMO

The NLRP3 inflammasome is a protein complex responsible for caspase-1-dependent maturation of the proinflammatory cytokines IL-1ß and IL-18. Gain-of-function missense mutations in NLRP3 cause the disease spectrum known as the cryopyrin-associated periodic syndromes (CAPS). In this study, we generated Nlrp3-knockin mice on various KO backgrounds including Il1b/Il18-, caspase-1-, caspase-11- (Casp1/11-), and Tnf-deficient strains. The Nlrp3L351P Il1b-/- Il18-/- mutant mice survived and grew normally until adulthood and, at 6 months of age, exhibited marked splenomegaly and leukophilia. Injection of these mice with low-dose LPS resulted in elevated serum TNF levels compared with Nlrp3L351P Casp1/11-/- mice and Il1b-/- Il18-/- littermates. Treatment of Nlrp3A350V mice with the TNF inhibitor etanercept resulted in all pups surviving to adulthood, with normal body and spleen/body weight ratios. Nlrp3A350V Tnf-/- mice showed a similar phenotypic rescue, with marked reductions in serum IL-1ß and IL-18, reduced myeloid inflammatory infiltrate in the skin and spleen, and substantial decreases in splenic mRNA expression of both inflammasome components (Nlrp3, Pycard, pro-Casp1) and pro-cytokines (Il1b, Il18). Likewise, we observed a reduction in the expression of both pro-Casp1 and pro-Il1b in cultured Nlrp3A350V Tnf-/- BM-derived DCs. Our data show that TNF is an important transcriptional regulator of NLRP3 inflammasome components in murine inflammasomopathies. Moreover, these results may have therapeutic implications for CAPS patients with partial responses to IL-1-targeted therapies.


Assuntos
Síndromes Periódicas Associadas à Criopirina/metabolismo , Inflamassomos/biossíntese , Proteína 3 que Contém Domínio de Pirina da Família NLR/biossíntese , Transcrição Gênica , Fator de Necrose Tumoral alfa/metabolismo , Animais , Caspase 1/genética , Caspase 1/metabolismo , Caspases/genética , Caspases/metabolismo , Caspases Iniciadoras , Síndromes Periódicas Associadas à Criopirina/genética , Síndromes Periódicas Associadas à Criopirina/patologia , Síndromes Periódicas Associadas à Criopirina/terapia , Inflamassomos/genética , Interleucina-18/genética , Interleucina-18/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fator de Necrose Tumoral alfa/genética
7.
J Hepatol ; 64(3): 699-707, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26555271

RESUMO

BACKGROUND & AIMS: Liver fibrosis is the most worrisome feature of non-alcoholic steatohepatitis (NASH). Growing evidence supports a link between hepatocyte apoptosis and liver fibrogenesis. Our aim was to determine the therapeutic efficacy and safety of liver Bid, a key pro-apoptotic molecule, suppression using RNA interference (RNAi) for the treatment of fibrosis. METHODS: First, we optimized the delivery system for Bid siRNA in mice using ten different stealth RNAi siRNAs and two lipid formulations -Invivofectamine2.0 and a newly developed Invivofectamine3.0 - that have been designed for high efficacy accumulation in the liver, assessed via real-time PCR of Bid mRNA. Next, C57BL/6 mice were placed on a choline-deficient L-amino acid defined (CDAA) diet. After 19weeks of the CDAA diet, a time point that results in severe fibrotic NASH, mice were injected with the selected Bid siRNA-Invivofectamine3.0 biweekly for three weeks. Additionally hepatocyte-specific Bid deficient (Bid(Δhep)) mice were placed on CDAA diet for 20weeks. RESULTS: A maximum Bid knockdown was achieved at 1.5mg/kg siRNA with Invivofectamine3.0, whereas it was at 7mg/kg with Invivofectamine2.0. In NASH mice, after 3weeks of treatment, BID protein was reduced to 10% and this was associated with an improvement in liver fibrosis and inflammation associated with a marked reduction in TUNEL positive cells, caspase 3 activation, and a reduction in mitochondrial BAX and BAK. Bid(Δhep) mice showed similar protection from fibrotic changes. CONCLUSION: Our data demonstrate that liver Bid suppression by RNAi technology, as well as hepatocyte-specific Bid deficiency, improves liver fibrosis coupled with a reduction of inflammation in experimental NASH. These findings are consistent with existing evidence that hepatocyte apoptosis triggers hepatic stellate cell activation and liver fibrosis and suggest that Bid inhibition may be useful as an antifibrotic NASH therapy.


Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/antagonistas & inibidores , Cirrose Hepática Experimental/terapia , Hepatopatia Gordurosa não Alcoólica/complicações , Interferência de RNA , Animais , Apoptose , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Vesículas Extracelulares/fisiologia , Células Hep G2 , Humanos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mitocôndrias/fisiologia
8.
PLoS One ; 9(12): e113651, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25470250

RESUMO

BACKGROUND & AIM: Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in both adult and children. Currently there are no reliable methods to determine disease severity, monitor disease progression, or efficacy of therapy, other than an invasive liver biopsy. DESIGN: Choline Deficient L-Amino Acid (CDAA) and high fat diets were used as physiologically relevant mouse models of NAFLD. Circulating extracellular vesicles were isolated, fully characterized by proteomics and molecular analyses and compared to control groups. Liver-related microRNAs were isolated from purified extracellular vesicles and liver specimens. RESULTS: We observed statistically significant differences in the level of extracellular vesicles (EVs) in liver and blood between two control groups and NAFLD animals. Time-course studies showed that EV levels increase early during disease development and reflect changes in liver histolopathology. EV levels correlated with hepatocyte cell death (r2 = 0.64, p<0.05), fibrosis (r2 = 0.66, p<0.05) and pathological angiogenesis (r2 = 0.71, p<0.05). Extensive characterization of blood EVs identified both microparticles (MPs) and exosomes (EXO) present in blood of NAFLD animals. Proteomic analysis of blood EVs detected various differentially expressed proteins in NAFLD versus control animals. Moreover, unsupervised hierarchical clustering identified a signature that allowed for discrimination between NAFLD and controls. Finally, the liver appears to be an important source of circulating EVs in NAFLD animals as evidenced by the enrichment in blood with miR-122 and 192--two microRNAs previously described in chronic liver diseases, coupled with a corresponding decrease in expression of these microRNAs in the liver. CONCLUSIONS: These findings suggest a potential for using specific circulating EVs as sensitive and specific biomarkers for the noninvasive diagnosis and monitoring of NAFLD.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Fígado/metabolismo , MicroRNAs/sangue , Hepatopatia Gordurosa não Alcoólica/patologia , Proteoma/metabolismo , Animais , Biomarcadores/sangue , Micropartículas Derivadas de Células/genética , Deficiência de Colina/complicações , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Exossomos/genética , Humanos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo
9.
J Hepatol ; 61(1): 107-15, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24681344

RESUMO

BACKGROUND & AIMS: Activation of Fas death receptor results in apoptosis in multiple organs, particularly liver, in a process dependent on Bid cleavage. Mice injected with an anti-Fas antibody die within hours of acute liver failure associated with massive apoptosis and hemorrhage. Our aim was to investigate the crosstalk of apoptotic and inflammatory pathways and the contribution of selective hepatocellular apoptosis during in vivo Fas activation. METHODS: We generated hepatocyte-specific Bid deficient mice (hBid(-/-)). Acute liver injury was induced by Fas-activating antibody (Jo2) in a time-course study. RESULTS: In contrast to controls, nearly all Jo2 injected hBid(-/-) survived. Their livers showed complete protection against hepatocellular apoptosis with minimal focal hemorrhagic changes and mainly non-parenchymal cell apoptosis. In agreement, the hepatocytes had no mitochondrial cytochrome c release in cytosol, or caspase 3 activation. hBid(-/-) livers showed marked increase in acute inflammatory foci composed of neutrophils and monocytes associated with the increased expression of proinflammatory chemokines and cytokines, in the manner dependent on non-canonical interleukin-1ß activation and amplified in the absence of caspase-3 activation. In addition, hBid(-/-) mice were completely protected from hepatotoxicity and the infiltrated cells were cleared 2 weeks post single Jo2 injection. CONCLUSIONS: Hepatocyte Bid suppression is critical for the resistance to the lethal effects of Fas activation in vivo. Fas signaling induces differential activation of non-canonical interleukin-1ß maturation, amplified in the absence of apoptotic Bid-mitochondrial loop, in hepatocytes. These findings may have important pathophysiological and therapeutic implications in a variety of liver disorders associated with Fas activation.


Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/deficiência , Hepatócitos/citologia , Hepatócitos/metabolismo , Receptor fas/metabolismo , Animais , Apoptose , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Caspase 3/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Técnicas de Inativação de Genes , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Receptor fas/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA