Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(7): e0134098, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26222047

RESUMO

BACKGROUND: Outer membrane vesicles (OMVs) are known to release from almost all Gram-negative bacteria during normal growth. OMVs carry different biologically active toxins and enzymes into the surrounding environment. We suggest that OMVs may therefore be able to transport bacterial proteases into the target host cells. We present here an analysis of the Vibrio cholerae OMV-associated protease PrtV. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we demonstrated that PrtV was secreted from the wild type V. cholerae strain C6706 via the type II secretion system in association with OMVs. By immunoblotting and electron microscopic analysis using immunogold labeling, the association of PrtV with OMVs was examined. We demonstrated that OMV-associated PrtV was biologically active by showing altered morphology and detachment of cells when the human ileocecum carcinoma (HCT8) cells were treated with OMVs from the wild type V. cholerae strain C6706 whereas cells treated with OMVs from the prtV isogenic mutant showed no morphological changes. Furthermore, OMV-associated PrtV protease showed a contribution to bacterial resistance towards the antimicrobial peptide LL-37. CONCLUSION/SIGNIFICANCE: Our findings suggest that OMVs released from V. cholerae can deliver a processed, biologically active form of PrtV that contributes to bacterial interactions with target host cells.


Assuntos
Membrana Celular/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise , Vibrio cholerae/citologia , Vibrio cholerae/enzimologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Linhagem Celular Tumoral , Farmacorresistência Bacteriana , Espaço Extracelular/metabolismo , Humanos , Transporte Proteico , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/metabolismo , Catelicidinas
2.
EMBO J ; 26(1): 19-27, 2007 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-17159897

RESUMO

EpsE is a cytoplasmic component of the type II secretion system in Vibrio cholerae. Through ATP hydrolysis and an interaction with the cytoplasmic membrane protein EpsL, EpsE supports secretion of cholera toxin across the outer membrane. In this study, we have determined the effect of the cytoplasmic domain of EpsL (cyto-EpsL) and purified phospholipids on the ATPase activity of EpsE. Acidic phospholipids, specifically cardiolipin, bound the copurified EpsE/cyto-EpsL complex and stimulated its ATPase activity 30-130-fold, whereas the activity of EpsE alone was unaffected. Removal of the last 11 residues (residues 243-253) from cyto-EpsL prevented cardiolipin binding as well as stimulation of the ATPase activity of EpsE. Further mutagenesis of the C-terminal region of the EpsL cytoplasmic domain adjacent to the predicted transmembrane helix suggested that this region participates in fine tuning the interaction of EpsE with the cytoplasmic membrane and influences the oligomerization state of EpsE thereby stimulating its ATPase activity and promoting extracellular secretion in V. cholerae.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Bactérias/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Fosfolipídeos/química , Vibrio cholerae/metabolismo , Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Cardiolipinas/química , Clonagem Molecular , Reagentes de Ligações Cruzadas/farmacologia , Citoplasma/metabolismo , Relação Dose-Resposta a Droga , Hidrólise , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína
3.
J Biol Chem ; 279(17): 16947-53, 2004 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-14766747

RESUMO

Sarcosine oxidase (SOX) is known as a peroxisomal enzyme in mammals and as a sarcosine-inducible enzyme in soil bacteria. Its presence in plants was unsuspected until the Arabidopsis genome was found to encode a protein (AtSOX) with approximately 33% sequence identity to mammalian and bacterial SOXs. When overexpressed in Escherichia coli, AtSOX enhanced growth on sarcosine as sole nitrogen source, showing that it has SOX activity in vivo, and the recombinant protein catalyzed the oxidation of sarcosine to glycine, formaldehyde, and H(2) O(2) in vitro. AtSOX also attacked other N-methyl amino acids and, like mammalian SOXs, catalyzed the oxidation of l-pipecolate to Delta(1)-piperideine-6-carboxylate. Like bacterial monomeric SOXs, AtSOX was active as a monomer, contained FAD covalently bound to a cysteine residue near the C terminus, and was not stimulated by tetrahydrofolate. Although AtSOX lacks a typical peroxisome-targeting signal, in vitro assays established that it is imported into peroxisomes. Quantitation of mRNA showed that AtSOX is expressed at a low level throughout the plant and is not sarcosine-inducible. Consistent with a low level of AtSOX expression, Arabidopsis plantlets slowly metabolized supplied [(14)C]sarcosine to glycine and serine. Gas chromatography-mass spectrometry analysis revealed low levels of pipecolate but almost no sarcosine in wild type Arabidopsis and showed that pipecolate but not sarcosine accumulated 6-fold when AtSOX expression was suppressed by RNA interference. Moreover, the pipecolate catabolite alpha-aminoadipate decreased 30-fold in RNA interference plants. These data indicate that pipecolate is the endogenous substrate for SOX in plants and that plants can utilize exogenous sarcosine opportunistically, sarcosine being a common soil metabolite.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Peroxissomos/enzimologia , Sarcosina/química , Sequência de Aminoácidos , Cucurbita/metabolismo , Cisteína/química , DNA Complementar/metabolismo , Escherichia coli/metabolismo , Formaldeído/química , Cromatografia Gasosa-Espectrometria de Massas , Glicina/química , Peróxido de Hidrogênio/química , Espectrometria de Massas , Microcorpos/metabolismo , Modelos Químicos , Dados de Sequência Molecular , Nitrogênio/química , Nitrogênio/metabolismo , Oxigênio/metabolismo , Peroxissomos/química , Peroxissomos/metabolismo , Estrutura Terciária de Proteína , Interferência de RNA , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Serina/química , Espectrometria de Massas por Ionização por Electrospray , Tetra-Hidrofolatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA