Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(2)2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36851488

RESUMO

After the onset of the AIDS pandemic, HIV-1 (genus Lentivirus) became the predominant model for studying retrovirus Env glycoproteins and their role in entry. However, HIV Env is an inadequate model for understanding entry of viruses in the Alpharetrovirus, Gammaretrovirus and Deltaretrovirus genera. For example, oncogenic model system viruses such as Rous sarcoma virus (RSV, Alpharetrovirus), murine leukemia virus (MLV, Gammaretrovirus) and human T-cell leukemia viruses (HTLV-I and HTLV-II, Deltaretrovirus) encode Envs that are structurally and functionally distinct from HIV Env. We refer to these as Gamma-type Envs. Gamma-type Envs are probably the most widespread retroviral Envs in nature. They are found in exogenous and endogenous retroviruses representing a broad spectrum of vertebrate hosts including amphibians, birds, reptiles, mammals and fish. In endogenous form, gamma-type Envs have been evolutionarily coopted numerous times, most notably as placental syncytins (e.g., human SYNC1 and SYNC2). Remarkably, gamma-type Envs are also found outside of the Retroviridae. Gp2 proteins of filoviruses (e.g., Ebolavirus) and snake arenaviruses in the genus Reptarenavirus are gamma-type Env homologs, products of ancient recombination events involving viruses of different Baltimore classes. Distinctive hallmarks of gamma-type Envs include a labile disulfide bond linking the surface and transmembrane subunits, a multi-stage attachment and fusion mechanism, a highly conserved (but poorly understood) "immunosuppressive domain", and activation by the viral protease during virion maturation. Here, we synthesize work from diverse retrovirus model systems to illustrate these distinctive properties and to highlight avenues for further exploration of gamma-type Env structure and function.


Assuntos
Alpharetrovirus , Ebolavirus , Retrovirus Endógenos , Gammaretrovirus , Soropositividade para HIV , Feminino , Gravidez , Animais , Humanos , Camundongos , Placenta , Vírus da Leucemia Murina , Glicoproteínas/genética , Mamíferos
2.
J Gen Virol ; 102(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34939563

RESUMO

Viruses in the family Retroviridae are found in a wide variety of vertebrate hosts. Enveloped virions are 80-100 nm in diameter with an inner core containing the viral genome and replicative enzymes. Core morphology is often characteristic for viruses within the same genus. Replication involves reverse transcription and integration into host cell DNA, resulting in a provirus. Integration into germline cells can result in a heritable provirus known as an endogenous retrovirus. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Retroviridae, which is available at ictv.global/report/retroviridae.


Assuntos
Vírus de DNA/classificação , Retroviridae/classificação , Animais , Vírus de DNA/genética , Vírus de DNA/fisiologia , Vírus de DNA/ultraestrutura , Genoma Viral , Especificidade de Hospedeiro , Retroviridae/genética , Retroviridae/fisiologia , Retroviridae/ultraestrutura , Vertebrados/virologia , Vírion/ultraestrutura , Replicação Viral
3.
mBio ; 11(6)2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203760

RESUMO

EnvP(b)1 is an endogenous retroviral envelope gene found in human and other primate genomes. We report EnvP(b)1 sequences in primate genomes consistent with an integration event between 40 and 71 million years ago. Using a highly specific polyclonal antiserum raised against the putative receptor binding domain (RBD) of human EnvP(b)1, we detected expression in human placenta, ovaries, and thymus. We found that EnvP(b)1 is proteolytically processed, and using cell-cell fusion assays in multiple primate cell lines, we demonstrated that extant EnvP(b)1 proteins from a variety of primate genomes are fusogenic. This work supports the idea that EnvP(b)1 is under purifying selection and its fusogenic activity has been maintained for over 40 million years. We determined the structure of the RBD of human EnvP(b)1, which defines structural similarities with extant leukemia viruses, despite little sequence conservation. This structure highlights a common scaffold from which novel receptor binding specificities likely evolved. The evolutionary plasticity of this domain may underlie the diversity of related Envs in circulating viruses.IMPORTANCE Organisms can access genetic and functional novelty by capturing viral elements within their genomes, where they can evolve to drive new cellular or organismal processes. We demonstrate that a retroviral envelope gene, EnvP(b)1, has been maintained and its fusion activity preserved for 40 to 71 million years. It is expressed as a protein in multiple healthy human tissues. We determined the structure of its inferred receptor binding domain and compared it with the same domain in modern viruses. We found a common conserved architecture that underlies the varied receptor binding activity of divergent Env genes. The modularity and versatility of this domain may underpin the evolutionary success of this clade of fusogens.


Assuntos
Retrovirus Endógenos/genética , Modelos Estruturais , Proteínas do Envelope Viral/metabolismo , Animais , Evolução Biológica , Fusão Celular , Linhagem Celular , Sequência Conservada/genética , Retrovirus Endógenos/fisiologia , Feminino , Humanos , Filogenia , Placenta/virologia , Gravidez , Primatas , Ligação Proteica , Domínios Proteicos , Proteínas do Envelope Viral/genética
4.
Cell Host Microbe ; 26(3): 299-300, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31513765

RESUMO

In this issue of Cell Host & Microbe, Buffalo et al. describe a cryo-EM structure of SIV Nef complexed with AP-2 and tetherin. The structure helps explain why human tetherin is Nef-resistant and why lentiviruses that successfully emerged in humans (HIV-1 and HIV-2) had to evolve novel anti-tetherin strategies.


Assuntos
HIV-1 , Vírus da Imunodeficiência Símia , Antígenos CD , Antígeno 2 do Estroma da Médula Óssea , Proteínas Ligadas por GPI , Humanos , Produtos do Gene nef do Vírus da Imunodeficiência Humana
5.
Nat Rev Microbiol ; 17(6): 355-370, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30962577

RESUMO

Retroviruses infect a broad range of vertebrate hosts that includes amphibians, reptiles, fish, birds and mammals. In addition, a typical vertebrate genome contains thousands of loci composed of ancient retroviral sequences known as endogenous retroviruses (ERVs). ERVs are molecular remnants of ancient retroviruses and proof that the ongoing relationship between retroviruses and their vertebrate hosts began hundreds of millions of years ago. The long-term impact of retroviruses on vertebrate evolution is twofold: first, as with other viruses, retroviruses act as agents of selection, driving the evolution of host genes that block viral infection or that mitigate pathogenesis, and second, through the phenomenon of endogenization, retroviruses contribute an abundance of genetic novelty to host genomes, including unique protein-coding genes and cis-acting regulatory elements. This Review describes ERV origins, their diversity and their relationships to retroviruses and discusses the potential for ERVs to reveal virus-host interactions on evolutionary timescales. It also describes some of the many examples of cellular functions, including protein-coding genes and regulatory elements, that have evolved from ERVs.


Assuntos
Retrovirus Endógenos/genética , Evolução Molecular , Animais , Produtos do Gene env/genética , Produtos do Gene env/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Proteínas da Gravidez/fisiologia , Sequências Repetidas Terminais , Internalização do Vírus
7.
Virology ; 516: 158-164, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29407373

RESUMO

Spumaretroviruses, commonly referred to as foamy viruses, are complex retroviruses belonging to the subfamily Spumaretrovirinae, family Retroviridae, which naturally infect a variety of animals including nonhuman primates (NHPs). Additionally, cross-species transmissions of simian foamy viruses (SFVs) to humans have occurred following exposure to tissues of infected NHPs. Recent research has led to the identification of previously unknown exogenous foamy viruses, and to the discovery of endogenous spumaretrovirus sequences in a variety of host genomes. Here, we describe an updated spumaretrovirus taxonomy that has been recently accepted by the International Committee on Taxonomy of Viruses (ICTV) Executive Committee, and describe a virus nomenclature that is generally consistent with that used for other retroviruses, such as lentiviruses and deltaretroviruses. This taxonomy can be applied to distinguish different, but closely related, primate (e.g., human, ape, simian) foamy viruses as well as those from other hosts. This proposal accounts for host-virus co-speciation and cross-species transmission.


Assuntos
Infecções por Retroviridae/veterinária , Infecções por Retroviridae/virologia , Spumavirus/classificação , Animais , Especificidade de Hospedeiro , Humanos , Filogenia , Primatas/virologia , Spumavirus/genética , Spumavirus/isolamento & purificação , Spumavirus/fisiologia
8.
J Virol ; 92(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29343575

RESUMO

Primate lentiviruses, including the human and simian immunodeficiency viruses (HIV and SIV), produce infections marked by persistent, ongoing viral replication. This occurs despite the presence of virus-specific adaptive immune responses, including antibodies targeting the viral envelope glycoprotein (Env), and evolution of antibody-escape variants is a well-documented feature of lentiviral infection. Here, we examined the evolutionary dynamics of the SIV env gene during early infection (≤29 weeks postinfection) in a cohort of four SIVmac251-infected rhesus macaques. We tracked env evolution during acute and early infection using frequent sampling and ultradeep sequencing of viral populations, capturing a transmission bottleneck and the subsequent reestablishment of Env diversity. A majority of changes in the gp120 subunit mapped to two short clusters, one in the first variable region (V1) and one in V4, while most changes in the gp41 subunit appeared in the cytoplasmic domain. Variation in V1 was dominated by short duplications and deletions of repetitive sequence, while variation in V4 was marked by short in-frame deletions and closely overlapping substitutions. The most common substitutions in both patches did not alter viral replicative fitness when tested using a highly sensitive, deep-sequencing-based competition assay. Our results, together with the observation that very similar or identical patterns of sequence evolution also occur in different macaque species infected with related but divergent strains of SIV, suggest that resistance to early, strain-specific anti-Env antibodies is the result of temporally and mutationally predictable pathways of escape that occur during the early stages of infection.IMPORTANCE The envelope glycoprotein (Env) of primate lentiviruses mediates entry by binding to host cell receptors followed by fusion of the viral membrane with the cell membrane. The exposure of Env complexes on the surface of the virion results in targeting by antibodies, leading to selection for virus escape mutations. We used the SIV/rhesus macaque model to track in vivo evolution of variation in Env during acute/early infection in animals with and without antibody responses to Env, uncovering remarkable variation in animals with antibody responses within weeks of infection. Using a deep-sequencing-based fitness assay, we found substitutions associated with antibody escape had little to no effect on inherent replicative capacity. The ability to readily propagate advantageous changes that incur little to no replicative fitness costs may be a mechanism to maintain continuous replication under constant immune selection, allowing the virus to persist for months to years in the infected host.


Assuntos
Anticorpos Antivirais , Produtos do Gene env/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Macaca mulatta
9.
Curr Opin Virol ; 25: 105-112, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28837888

RESUMO

Due to recombination, different regions of a retrovirus genome can have distinct phylogenetic histories. The RD114-and-D-type-retrovirus (RDR) interference group provides an extreme example: the RDR group comprises a variety of taxonomically distinct retroviruses, isolated from diverse mammalian and avian hosts, that share a homologous env gene and use the same cell-surface entry receptor. RDR env homologs are also found among ancient endogenous retrovirus (ERV) sequences, including the syncytin genes of humans and rabbits, indicating that RDR Env glycoproteins have likely mediated endogenization on multiple occasions in diverse vertebrate lineages. The distribution of RDR env among exogenous and endogenous retroviruses indicates that it has been swapped between viruses many times, and that it likely facilitated multiple cross-species transmission events spanning millions of years of vertebrate evolution.


Assuntos
Retrovirus Endógenos/genética , Retrovirus Endógenos/fisiologia , Evolução Molecular , Produtos do Gene env/genética , Genes env , Retroviridae/genética , Retroviridae/fisiologia , Sistema ASC de Transporte de Aminoácidos/genética , Animais , Produtos do Gene env/química , Humanos , Proteínas da Gravidez/genética , Coelhos , Recombinação Genética
10.
Bioinformatics ; 33(16): 2455-2463, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28379346

RESUMO

MOTIVATION: Next generation sequencing (NGS) has been increasingly applied to characterize viral evolution during HIV and SIV infections. In particular, NGS datasets sampled during the initial months of infection are characterized by relatively low levels of diversity as well as convergent evolution at multiple loci dispersed across the viral genome. Consequently, fully characterizing viral evolution from NGS datasets requires haplotype reconstruction across large regions of the viral genome. Existing haplotype reconstruction algorithms have not been developed with the particular characteristics of early HIV/SIV infection in mind, raising the possibility that better performance could be achieved through a specifically designed algorithm. RESULTS: Here, we introduce a haplotype reconstruction algorithm, RegressHaplo, specifically designed for low diversity and convergent evolution regimes. The algorithm uses a penalized regression that balances a data fitting term with a penalty term that encourages solutions with few haplotypes. The regression covariates are a large set of potential haplotypes and fitting the regression is made computationally feasible by the low diversity setting. Using simulated and in vivo datasets, we compare RegressHaplo to PredictHaplo and QuRe, two existing haplotype reconstruction algorithms. RegressHaplo performs better than these algorithms on simulated datasets with relatively low diversity levels. We suggest RegressHaplo as a novel tool for the investigation of early infection HIV/SIV datasets and, more generally, low diversity viral NGS datasets. CONTACT: sr286@georgetown.edu. AVAILABILITY AND IMPLEMENTATION: https://github.com/SLeviyang/RegressHaplo.


Assuntos
Genoma Viral , HIV/genética , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Vírus da Imunodeficiência Símia/genética , Software , Algoritmos , Animais , Genômica/métodos , Infecções por HIV/genética , Humanos , Infecções por Retroviridae/genética , Infecções por Retroviridae/virologia , Análise de Sequência de RNA/métodos
11.
AIDS Res Hum Retroviruses ; 33(8): 869-879, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28075174

RESUMO

We have constructed a single chain fragment variable (scFv) phage display library from a simian immunodeficiency virus (SIV)-infected rhesus macaque that developed unusually high-titer neutralizing antibody responses against tier-3, neutralization-resistant SIVmac239. The library was screened using trimeric (gp140) and monomeric (gp120) forms of the SIVmac239 envelope (Env) glycoprotein. We also cloned variable-heavy and variable-light (VH-VL) antibody fragments from seven previously described rhesus macaque B-cell lines (BLCLs) that produce SIV gp120-specific monoclonal antibodies (mAbs). Thirty-two gp140-specific mAbs were selected along with 20 gp120-specific ones. gp120-specific mAbs were only from the VH4 family, while gp41-specific mAbs were primarily from VH1, followed by VH4 and VH3. Rhesus macaque BLCL-derived mAbs belonged primarily to the VH4 family of antibodies followed by VH3 and a smaller number of VH1s. A preferential VH combination with Vλ light chain was observed with phage display-selected SIV Env-specific mAbs (gp120 and gp140), but not with BLCL-derived antibodies or the unpanned library. None of the tested antibodies had detectable neutralizing activity against tier-3 SIVmac239. The majority of gp120-specifc mAbs potently neutralized tier-1 SIVmac316 with 50% inhibitory concentration (IC50) values below 1 µg/ml. For gp140-specific antibodies, which were all specific for the gp41-subunit, 2 out of 11 tested neutralized SIVmac316 (IC50 of 7 and 5 µg/ml, respectively). These data suggest an order of preferential VH segment usage for SIV-specific antibodies in rhesus macaques. These antibodies will be useful in assessing the contribution of non-neutralizing antibodies to inhibition of SIV infection in vitro and in vivo.


Assuntos
Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Vírus da Imunodeficiência Símia/imunologia , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/isolamento & purificação , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Concentração Inibidora 50 , Macaca mulatta , Programas de Rastreamento , Testes de Neutralização , Biblioteca de Peptídeos
12.
Mol Biol Evol ; 34(3): 634-639, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28039384

RESUMO

We have identified a retroviral envelope gene with a complete, intact open reading frame (ORF) in 20 species of spiny-rayed fishes (Acanthomorpha). The taxonomic distribution of the gene, "percomORF", indicates insertion into the ancestral lineage >110 Ma, making it the oldest known conserved gene of viral origin in a vertebrate genome. Underscoring its ancient provenence, percomORF exists as an isolated ORF within the intron of a widely conserved host gene, with no discernible proviral sequence nearby. Despite its remarkable age, percomORF retains canonical features of a retroviral glycoprotein, and tests for selection strongly suggest cooption for a host function. Retroviral envelope genes have been coopted for a role in placentogenesis by numerous lineages of mammals, including eutherians and marsupials, representing a variety of placental structures. Therefore percomORF's presence within the group Percomorpha-unique among spiny-finned fishes in having evolved placentation and live birth-is especially intriguing.


Assuntos
Retrovirus Endógenos/genética , Peixes/genética , Peixes/virologia , Produtos do Gene env/genética , Animais , Evolução Biológica , Sequência Conservada , Evolução Molecular , Fases de Leitura Aberta , Filogenia , Provírus/genética , Proteínas dos Retroviridae/genética , Análise de Sequência de DNA/métodos , Proteínas do Envelope Viral/genética
13.
PLoS One ; 11(7): e0159281, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27415779

RESUMO

In the 20th century, thirteen distinct human immunodeficiency viruses emerged following independent cross-species transmission events involving simian immunodeficiency viruses (SIV) from African primates. In the late 1900s, pathogenic SIV strains also emerged in the United Sates among captive Asian macaque species following their unintentional infection with SIV from African sooty mangabeys (SIVsmm). Since their discovery in the 1980s, SIVs from rhesus macaques (SIVmac) and pig-tailed macaques (SIVmne) have become invaluable models for studying HIV pathogenesis, vaccine design and the emergence of viruses. SIV isolates from captive crab-eating macaques (SIVmfa) were initially described but lost prior to any detailed molecular and genetic characterization. In order to infer the origins of the lost SIVmfa lineage, we located archived material and colony records, recovered its genomic sequence by PCR, and assessed its phylogenetic relationship to other SIV strains. We conclude that SIVmfa is the product of two cross-species transmission events. The first was the established transmission of SIVsmm to rhesus macaques, which occurred at the California National Primate Research Center in the late 1960s and the virus later emerged as SIVmac. In a second event, SIVmac was transmitted to crab-eating macaques, likely at the Laboratory for Experimental Medicine and Surgery in Primates in the early 1970s, and it was later spread to the New England Primate Research Center colony in 1973 and eventually isolated in 1986. Our analysis suggests that SIVmac had already emerged by the early 1970s and had begun to diverge into distinct lineages. Furthermore, our findings suggest that pathogenic SIV strains may have been more widely distributed than previously appreciated, raising the possibility that additional isolates may await discovery.


Assuntos
Macaca fascicularis/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Animais , Cercocebus atys/virologia , Modelos Animais de Doenças , Genoma Viral/genética , Macaca nemestrina/virologia , Filogenia
14.
Elife ; 5: e12704, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26952212

RESUMO

Mammalian genomes typically contain hundreds of thousands of endogenous retroviruses (ERVs), derived from ancient retroviral infections. Using this molecular 'fossil' record, we reconstructed the natural history of a specific retrovirus lineage (ERV-Fc) that disseminated widely between ~33 and ~15 million years ago, corresponding to the Oligocene and early Miocene epochs. Intercontinental viral spread, numerous instances of interspecies transmission and emergence in hosts representing at least 11 mammalian orders, and a significant role for recombination in diversification of this viral lineage were also revealed. By reconstructing the canonical retroviral genes, we identified patterns of adaptation consistent with selection to maintain essential viral protein functions. Our results demonstrate the unique potential of the ERV fossil record for studying the processes of viral spread and emergence as they play out across macro-evolutionary timescales, such that looking back in time may prove insightful for predicting the long-term consequences of newly emerging viral infections.


Assuntos
Retrovirus Endógenos/classificação , Retrovirus Endógenos/isolamento & purificação , Evolução Molecular , Genoma Viral , Genótipo , Mamíferos/virologia , Infecções por Retroviridae/veterinária , Animais , Retrovirus Endógenos/genética , Infecções por Retroviridae/transmissão , Infecções por Retroviridae/virologia
15.
Oncotarget ; 6(37): 39969-79, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26544511

RESUMO

APOBEC3B is a newly identified source of mutation in many cancers, including breast, head/neck, lung, bladder, cervical, and ovarian. APOBEC3B is a member of the APOBEC3 family of enzymes that deaminate DNA cytosine to produce the pro-mutagenic lesion, uracil. Several APOBEC3 family members function to restrict virus replication. For instance, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H combine to restrict HIV-1 in human lymphocytes. HIV-1 counteracts these APOBEC3s with the viral protein Vif, which targets the relevant APOBEC3s for proteasomal degradation. While APOBEC3B does not restrict HIV-1 and is not targeted by HIV-1 Vif in CD4-positive T cells, we asked whether related lentiviral Vif proteins could degrade APOBEC3B. Interestingly, several SIV Vif proteins are capable of promoting APOBEC3B degradation, with SIVmac239 Vif proving the most potent. This likely occurs through the canonical polyubiquitination mechanism as APOBEC3B protein levels are restored by MG132 treatment and by altering a conserved E3 ligase-binding motif. We further show that SIVmac239 Vif can prevent APOBEC3B mediated geno/cytotoxicity and degrade endogenous APOBEC3B in several cancer cell lines. Our data indicate that the APOBEC3B degradation potential of SIV Vif is an effective tool for neutralizing the cancer genomic DNA deaminase APOBEC3B. Further optimization of this natural APOBEC3 antagonist may benefit cancer therapy.


Assuntos
Citidina Desaminase/metabolismo , Produtos do Gene vif/metabolismo , Vírus da Imunodeficiência Símia/metabolismo , Desaminase APOBEC-3G , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Citidina Desaminase/genética , Dano ao DNA , Produtos do Gene vif/genética , Células HEK293 , Humanos , Immunoblotting , Macaca mulatta/virologia , Antígenos de Histocompatibilidade Menor , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Vírus da Imunodeficiência Símia/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo
16.
Annu Rev Virol ; 2(1): 135-59, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26958910

RESUMO

Endogenous retroviruses comprise millions of discrete genetic loci distributed within the genomes of extant vertebrates. These sequences, which are clearly related to exogenous retroviruses, represent retroviral infections of the deep past, and their abundance suggests that retroviruses were a near-constant presence throughout the evolutionary history of modern vertebrates. Endogenous retroviruses contribute in myriad ways to the evolution of host genomes, as mutagens and as sources of genetic novelty (both coding and regulatory) to be acted upon by the twin engines of random genetic drift and natural selection. Importantly, the richness and complexity of endogenous retrovirus data can be used to understand how viruses spread and adapt on evolutionary timescales by combining population genetics and evolutionary theory with a detailed understanding of retrovirus biology (gleaned from the study of extant retroviruses). In addition to revealing the impact of viruses on organismal evolution, such studies can help us better understand, by looking back in time, how life-history traits, as well as ecological and geological events, influence the movement of viruses within and between populations.


Assuntos
Retrovirus Endógenos/genética , Evolução Molecular , Infecções por Retroviridae/veterinária , Infecções por Retroviridae/virologia , Vertebrados/virologia , Animais , Retrovirus Endógenos/classificação , Retrovirus Endógenos/isolamento & purificação , Genoma Viral , Genômica , Humanos , Vertebrados/genética
17.
Vaccine ; 32(48): 6527-36, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25245933

RESUMO

We sought to test whether vaccine-induced immune responses could protect rhesus macaques (RMs) against upfront heterologous challenges with an R5 simian-human immunodeficiency virus, SHIV-2873Nip. This SHIV strain exhibits many properties of transmitted HIV-1, such as tier 2 phenotype (relatively difficult to neutralize), exclusive CCR5 tropism, and gradual disease progression in infected RMs. Since no human AIDS vaccine recipient is likely to encounter an HIV-1 strain that exactly matches the immunogens, we immunized the RMs with recombinant Env proteins heterologous to the challenge virus. For induction of immune responses against Gag, Tat, and Nef, we explored a strategy of immunization with overlapping synthetic peptides (OSP). The immune responses against Gag and Tat were finally boosted with recombinant proteins. The vaccinees and a group of ten control animals were given five low-dose intrarectal (i.r.) challenges with SHIV-2873Nip. All controls and seven out of eight vaccinees became systemically infected; there was no significant difference in viremia levels of vaccinees vs. controls. Prevention of viremia was observed in one vaccinee which showed strong boosting of virus-specific cellular immunity during virus exposures. The protected animal showed no challenge virus-specific neutralizing antibodies in the TZM-bl or A3R5 cell-based assays and had low-level ADCC activity after the virus exposures. Microarray data strongly supported a role for cellular immunity in the protected animal. Our study represents a case of protection against heterologous tier 2 SHIV-C by vaccine-induced, virus-specific cellular immune responses.


Assuntos
Vacinas contra a AIDS/imunologia , Imunidade nas Mucosas , Vacinação/métodos , Animais , Anticorpos Neutralizantes/sangue , Produtos do Gene gag/imunologia , Produtos do Gene nef/imunologia , Anticorpos Anti-HIV/sangue , Proteína gp160 do Envelope de HIV/imunologia , HIV-1 , Imunidade Celular , Imunidade Humoral , Macaca mulatta/imunologia , Proteínas Recombinantes/imunologia , Vírus da Imunodeficiência Símia , Vacinas Sintéticas/imunologia , Viremia/prevenção & controle , Produtos do Gene tat do Vírus da Imunodeficiência Humana/imunologia
18.
J Virol ; 88(5): 2398-405, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24352464

RESUMO

UNLABELLED: Endogenous retroviruses (ERVs) represent ancestral sequences of modern retroviruses or their extinct relatives. The majority of ERVs cluster alongside exogenous retroviruses into two main groups based on phylogenetic analyses of the reverse transcriptase (RT) enzyme. Class I includes gammaretroviruses, and class II includes lentiviruses and alpha-, beta-, and deltaretroviruses. However, analyses of the transmembrane subunit (TM) of the envelope glycoprotein (env) gene result in a different topology for some retroviruses, suggesting recombination events in which heterologous env sequences have been acquired. We previously demonstrated that the TM sequences of five of the six genera of orthoretroviruses can be divided into three types, each of which infects a distinct set of vertebrate classes. Moreover, these classes do not always overlap the host range of the associated RT classes. Thus, recombination resulting in acquisition of a heterologous env gene could in theory facilitate cross-species transmissions across vertebrate classes, for example, from mammals to reptiles. Here we characterized a family of class II avian ERVs, "TgERV-F," that acquired a mammalian gammaretroviral env sequence. Although TgERV-F clusters near a sister clade to alpharetroviruses, its genome also has some features of betaretroviruses. We offer evidence that this unusual recombinant has circulated among several avian orders and may still have infectious members. In addition to documenting the infection of a nongalliform avian species by a mammalian retrovirus, TgERV-F also underscores the importance of env sequences in reconstructing phylogenies and supports a possible role for env swapping in allowing cross-species transmissions across wide taxonomic distances. IMPORTANCE: Retroviruses can sometimes acquire an envelope gene (env) from a distantly related retrovirus. Since env is a key determinant of host range, such an event affects the host range of the recombinant virus and can lead to the creation of novel retroviral lineages. Retroviruses insert viral DNA into the host DNA during infection, and therefore vertebrate genomes contain a "fossil record" of endogenous retroviral sequences thought to represent past infections of germ cells. We examined endogenous retroviral sequences in avian genomes for evidence of recombination events involving env. Although cross-species transmissions of retroviruses between vertebrate classes (from mammals to birds, for example) are thought to be rare, we here characterized a group of avian retroviruses that acquired an env sequence from a mammalian retrovirus. We offer evidence that this unusual recombinant circulated among songbirds 2 to 4 million years ago and has remained active into the recent past.


Assuntos
Retrovirus Endógenos/genética , Genoma Viral , Recombinação Genética , Animais , Retrovirus Endógenos/classificação , Evolução Molecular , Tentilhões/virologia , Ordem dos Genes , Genótipo , Fases de Leitura Aberta , Filogenia , Provírus/genética , Retroviridae/classificação , Retroviridae/genética , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
19.
Philos Trans R Soc Lond B Biol Sci ; 368(1626): 20120506, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-23938755

RESUMO

The majority of retroviral envelope glycoproteins characterized to date are typical of type I viral fusion proteins, having a receptor binding subunit associated with a fusion subunit. The fusion subunits of lentiviruses and alpha-, beta-, delta- and gammaretroviruses have a very conserved domain organization and conserved features of secondary structure, making them suitable for phylogenetic analyses. Such analyses, along with sequence comparisons, reveal evidence of numerous recombination events in which retroviruses have acquired envelope glycoproteins from heterologous sequences. Thus, the envelope gene (env) can have a history separate from that of the polymerase gene (pol), which is the most commonly used gene in phylogenetic analyses of retroviruses. Focusing on the fusion subunits of the genera listed above, we describe three distinct types of retroviral envelope glycoproteins, which we refer to as gamma-type, avian gamma-type and beta-type. By tracing these types within the 'fossil record' provided by endogenous retroviruses, we show that they have surprisingly distinct evolutionary histories and dynamics, with important implications for cross-species transmissions and the generation of novel lineages. These findings validate the utility of env sequences in contributing phylogenetic signal that enlarges our understanding of retrovirus evolution.


Assuntos
Retrovirus Endógenos/genética , Evolução Molecular , Proteínas do Envelope Viral/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Dados de Sequência Molecular , Filogenia , Recombinação Genética , Alinhamento de Sequência
20.
J Virol ; 87(13): 7246-54, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23637396

RESUMO

Vaccine/challenge experiments that utilize live attenuated strains of simian immunodeficiency virus (SIV) in monkeys may be useful for elucidating what is needed from a vaccine in order to achieve protective immunity. Derivatives of SIVmac239 and SIVmac239Δnef were constructed in which env sequences were replaced with those of the heterologous strain E543; these were then used in vaccine/challenge experiments. When challenge occurred at 22 weeks, 10 of 12 monkeys exhibited apparent sterilizing immunity despite a mismatch of Env sequences, compared to 12 of 12 monkeys with apparent sterilizing immunity when challenge virus was matched in its Env sequence. However, when challenge occurred at 6 weeks, 6 of 6 SIV239Δnef-immunized monkeys became superinfected by challenge virus mismatched in its Env sequence (SIV239/EnvE543). These results contrast markedly not only with the results of the week 22 challenge but also with the sterilizing immunity observed in 5 of 5 SIV239Δnef-immunized rhesus monkeys challenged at 5 weeks with SIV239, i.e., with no mismatch of Env sequences. We conclude from these studies that a mismatch of Env sequences in the challenge virus can have a dramatic effect on the extent of apparent sterilizing immunity when challenge occurs relatively early, 5 to 6 weeks after the nef-deleted SIV administration. However, by 22 weeks, mismatch of Env sequences has little or no influence on the degree of protection against challenge virus. Our findings suggest that anti-Env immune responses are a key component of the protective immunity elicited by live attenuated, nef-deleted SIV.


Assuntos
Produtos do Gene env/genética , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/imunologia , Vacinas Virais/genética , Animais , Sequência de Bases , ELISPOT , Produtos do Gene env/imunologia , Células HEK293 , Humanos , Interferon gama/metabolismo , Macaca mulatta , Dados de Sequência Molecular , Testes de Neutralização , Análise de Sequência de DNA , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Carga Viral , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA