Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurodegener Dis ; 5(2): 65-71, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18182780

RESUMO

BACKGROUND: In vivo administration of antibodies against the amyloid-beta (Abeta) peptide has been shown to reduce and reverse the progressive amyloidosis that develops in a variety of mouse models of Alzheimer's disease (AD). This work has been extended to clinical trials where subsequent autopsy cases of AD subjects immunized against Abeta showed similar reductions in parenchymal amyloid plaques, suggesting this approach to reduce neuropathology in man is feasible. OBJECTIVE: Multiple hypotheses have been advanced to explain how anti-Abeta antibodies may lower amyloid burden. In this report, we compare approaches utilizing either plaque-binding or peptide-capturing anti-Abeta antibodies for effectiveness in reducing amyloidosis in a mouse model of AD. METHODS: A plaque-binding monoclonal antibody (3D6) and an Abeta peptide-capturing monoclonal antibody (266) were compared in chronic treatment and prevention paradigms using a transgenic mouse model of AD. The effects of antibody therapy on plaque burden and plasma clearance of Abeta were investigated by quantitative imaging and clearance studies of intravenously injected (125)I-Abeta. RESULTS: The plaque-binding antibody 3D6 was highly effective in either treatment or prevention of amyloidosis. In these studies, the peptide-capture antibody 266 showed no reduction in amyloidosis in either paradigm and showed trends towards increasing amyloidosis. Antibody 266 was also found to greatly prolong (>180-fold) the normally rapid peripheral clearance of Abeta, in contrast to that found with 3D6 (>24-fold). CONCLUSION: Reversing and preventing Alzheimer's type amyloidosis is most effectively accomplished with anti-amyloid antibodies that avidly bind plaque.


Assuntos
Peptídeos beta-Amiloides/imunologia , Amiloidose/imunologia , Anticorpos/uso terapêutico , Córtex Cerebral/imunologia , Placa Amiloide/imunologia , Peptídeos beta-Amiloides/sangue , Amiloidose/sangue , Amiloidose/terapia , Animais , Anticorpos/metabolismo , Córtex Cerebral/patologia , Feminino , Camundongos , Camundongos Transgênicos , Placa Amiloide/patologia , Ligação Proteica/imunologia , Solubilidade
2.
J Neurosci ; 25(40): 9096-101, 2005 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-16207868

RESUMO

Alzheimer's disease neuropathology is characterized by key features that include the deposition of the amyloid beta peptide (Abeta) into plaques, the formation of neurofibrillary tangles, and the loss of neurons and synapses in specific brain regions. The loss of synapses, and particularly the associated presynaptic vesicle protein synaptophysin in the hippocampus and association cortices, has been widely reported to be one of the most robust correlates of Alzheimer's disease-associated cognitive decline. The beta-amyloid hypothesis supports the idea that Abeta is the cause of these pathologies. However, the hypothesis is still controversial, in part because the direct role of Abeta in synaptic degeneration awaits confirmation. In this study, we show that Abeta reduction by active or passive Abeta immunization protects against the progressive loss of synaptophysin in the hippocampal molecular layer and frontal neocortex of a transgenic mouse model of Alzheimer's disease. These results, substantiated by quantitative electron microscopic analysis of synaptic densities, strongly support a direct causative role of Abeta in the synaptic degeneration seen in Alzheimer's disease and strengthen the potential of Abeta immunotherapy as a treatment approach for this disease.


Assuntos
Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/administração & dosagem , Imunoterapia , Degeneração Neural/terapia , Sinapses/efeitos dos fármacos , Fatores Etários , Peptídeos beta-Amiloides/imunologia , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática/métodos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Imuno-Histoquímica/métodos , Camundongos , Camundongos Transgênicos , Degeneração Neural/imunologia , Degeneração Neural/metabolismo , Peptídeos/administração & dosagem , Peptídeos/genética , Peptídeos/imunologia , Sinaptofisina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA