Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38412360

RESUMO

A strain of Bacillus subtilis (MAFIC Y7) was isolated from the intestine of Tibetan pigs and was able to express high protease activity. The aim of this study was to characterize the proteases produced by MAFIC Y7, and to investigate the effects of protease addition on growth performance, ileal amino acid digestibility, and serum immunoglobulin and immune factors of broilers fed SBM-based diets, or on growth performance, carcass characteristics, and intestinal morphology of broilers fed CSM-based diets. B. subtilis (MAFIC Y7) expressed protease showed its optimal enzyme activity at 50 °C and pH 7.0. The coated crude enzyme (CCE) showed greater stability at pH 3.0 than its uncoated counterpart. Experiment 1 was conducted with six diets based on three levels of crude protein (CP)-CPlow, CPmedium, and CPhigh-with or without CCE. In CPlow, CCE increased gain:feed (G:F) (days 1 to 21, days 1 to 42) by 8%, 3%, respectively, and enhanced apparent ileal digestibility (AID) of crude protein and lysine (on day 42) by 8.8%, 4.6%, respectively, compared with diets containing no CCE (P < 0.05). CCE increased G:F from days 1 to 21 from 0.63 to 0.68, improved G:F and average daily gain (ADG) during days 1 to 42, and enhanced AID of crude protein, lysine, cysteine, and isoleucine on day 42 compared with the unsupplemented treatments (in CPmedium, P < 0.05). CCE increased serum IgA (on day 21), serum IgA and IgG and increased serum IL-10 (on day 42), but decreased serum tumor necrosis factor-α (TNF-α; on day 21), and serum IL-8 and TNF-α (on day 42) compared with unsupplemented treatments. At CPhigh, CCE decreased serum levels of IL-6 and TNF-α (on day 21), and IL-8 and TNF-α (on day 42) compared with unsupplemented treatments (in CPhigh, P < 0.05). In experiment 2, CSM-based diets with two lysine-to-protein ratios (5.2% or 5.5%) with or without CCE. In the high Lys diet (5.5% Lys:protein), CCE increased ADG and G:F, increased carcass, but decreased abdominal fat compared with the unsupplemented treatment (P < 0.05). In the 5.2% Lys:protein dietary treatment, CCE improved duodenal villus height compared with the unsupplemented treatment (P < 0.05). Supplementation of protease produced by MAFIC Y7 was associated with lower inflammatory responses in SBM diets (CPmedium or CPhigh) and improved ADG in broilers fed CPmedium or CPhigh. The proteases improved ADG and the efficiency of CSM use when the ratio of Lys to protein was 5.5%.


The aim of this study was to investigate the effects of Bacillus subtilis (MAFIC Y7)-expressed protease on reducing inflammatory responses of soybean meal (SBM) diets and improving the efficiency of cottonseed meal (CSM) in broilers. Experiment 1 was conducted with six dietary treatments based on three levels of crude protein (CP)­CPlow, CPmedium, and CPhigh­without or with proteases (0 or 4,000 U/kg). Supplementation of proteases significantly improved growth performance, gain:feed (G:F), and apparent ileal digestibility of crude protein and amino acids (cysteine, isoleucine, and histidine) in broilers fed CPmedium treatment (P < 0.05). Proteases inhibited inflammatory responses in SBM-based diets by decreasing serum tumor necrosis factor-α (TNF-α) (in CPmedium and CPhigh), and interleukin (IL)-6 (in CPhigh); and IL-8 and TNF-α (in CPmedium and CPhigh) on day 21. In experiment 2, broilers were fed with CSM-based diets with two ratios of lysine-to-protein (5.2% or 5.5%) with or without proteases. Proteases in the diet of 5.5% Lys to protein ratio increased growth performance and G:F compared to diets without proteases (P < 0.05). Proteases produced by MAFIC Y7 improved growth performance and G:F in CPmedium. Supplementation of protease was associated with lower inflammatory responses of broilers fed SBM-based diets (CPmedium or CPhigh) and improved the efficiency of CSM use when the ratio of lysine-to-protein was 5.5%.


Assuntos
Bacillus subtilis , Lisina , Animais , Suínos , Lisina/metabolismo , Galinhas/fisiologia , Óleo de Sementes de Algodão , Peptídeo Hidrolases/metabolismo , Farinha , Interleucina-8/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Dieta/veterinária , Anti-Inflamatórios , Imunoglobulina A/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal
2.
Crit Rev Food Sci Nutr ; 63(32): 11263-11274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35694795

RESUMO

Intestinal stem cells (ISCs), which locate at the base of intestinal crypts, are key determinants of governing proliferation and differentiation of the intestinal epithelium. The surrounding cells of ISCs and their related growth factors form ISC niche, supporting ISC function and self-renewal. ISC has an underappreciated but emerging role as a sensor of dietary nutrients, which fate decisions is adjusted in response to nutritional states to regulate gut homeostasis. Here, we review endogenous and exogenous factors, such as caloric restriction, fasting, fat, glucose and trace element. They instruct ISCs via mTORC1, PPAR/CPT1α, PPARγ/ß-catenin, Wnt/GSK-3ß pathway, respectively, jointly affect intestinal homeostasis. These dietary responses regulate ISC regenerative capacity and may be a potential target for cancer prevention. However, without precise definitions of nutrition intervene, it will be difficult to generate sufficient data to extending our knowledge of the biological response of ISC on nutrients. More accurately modeling organoids or high-throughput automated organoid culture in microcavity arrays have provided unprecedented opportunities for modeling diet-host interactions. These major advances collectively provide new insights into nutritional regulation of ISC proliferation and differentiation and drive us ever closer to breakthroughs for regenerative medicine and disease treatment by nutrition intervention in the clinic.


Assuntos
Mucosa Intestinal , Células-Tronco , Glicogênio Sintase Quinase 3 beta/metabolismo , Proliferação de Células , Mucosa Intestinal/metabolismo , Células-Tronco/metabolismo , Diferenciação Celular , Dieta , Homeostase , Intestinos
3.
Imeta ; 1(4): e54, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38867904

RESUMO

Intestinal epithelium undergoes rapid cellular turnover, relying on the local niche, to support intestinal stem cells (ISCs) function and self-renewal. Research into the association between ISCs and disease continues to expand at a rapid rate. However, the detailed interaction of ISCs and gut microbes remains to be elucidated. Thus, this review witnessed major advances in the crosstalk between ISCs and gut microbes, delivering key insights into (1) construction of ISC niche and molecular mechanism of how to jointly govern epithelial homeostasis and protect against intestinal diseases with the participation of Wnt, bone morphogenetic protein, and Notch; (2) differentiation fate of ISCs affect the gut microbiota. Meanwhile, the presence of intestinal microbes also regulates ISC function; (3) microbiota regulation on ISCs by Wnt and Notch signals through pattern recognition receptors; (4) how do specific microbiota-related postbiotics influence ISCs to maintain intestinal epithelial regeneration and homeostasis that provide insights into a promising alternative therapeutic method for intestinal diseases. Considering the detailed interaction is still unclear, it is necessary to further explore the regulatory role of gut microbiota on ISCs to utilize microbes to alleviate gut disorders. Furthermore, these major advances collectively drive us ever closer to breakthroughs in regenerative medicine and cancer treatment by microbial transplantation in the clinic.

4.
Int J Mol Sci ; 22(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34768858

RESUMO

Functional amino acids provide great potential for treating autophagy-related diseases by regulating autophagy. The purpose of the autophagy process is to remove unwanted cellular contents and to recycle nutrients, which is controlled by many factors. Disordered autophagy has been reported to be associated with various diseases, such as cancer, neurodegeneration, aging, and obesity. Autophagy cannot be directly controlled and dynamic amino acid levels are sufficient to regulate autophagy. To date, arginine, leucine, glutamine, and methionine are widely reported functional amino acids that regulate autophagy. As a signal relay station, mammalian target of rapamycin complex 1 (mTORC1) turns various amino acid signals into autophagy signaling pathways for functional amino acids. Deficiency or supplementation of functional amino acids can immediately regulate autophagy and is associated with autophagy-related disease. This review summarizes the mechanisms currently involved in autophagy and amino acid sensing, diverse signal transduction among functional amino acids and autophagy, and the therapeutic appeal of amino acids to autophagy-related diseases. We aim to provide a comprehensive overview of the mechanisms of amino acid regulation of autophagy and the role of functional amino acids in clinical autophagy-related diseases and to further convert these mechanisms into feasible therapeutic applications.


Assuntos
Aminoácidos/metabolismo , Autofagia/fisiologia , Transdução de Sinais/fisiologia , Envelhecimento/fisiologia , Arginina/metabolismo , Glutamina/metabolismo , Humanos , Leucina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metionina/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/patologia , Obesidade/patologia
5.
J Anim Sci Biotechnol ; 10: 51, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31312446

RESUMO

BACKGROUND: Maize oil is abundantly used in foods and feeds and is highly susceptible to oxidation. Consequently, commercially available antioxidants should be evaluated for effectiveness against lipid oxidation in swine diets. Our study was conducted to evaluate growth performance of nursery pigs fed oxidized maize oil and to determine effects of using antioxidants on oxidative status in a 2 × 2 factorial design. Two hundred eight weaned pigs were blocked by initial BW into 13 blocks, resulting in 4 pigs per pen and 13 pens per treatment. Dietary treatments included 6% unoxidized or oxidized maize oil, and 0 or 60 mg/kg of tert-butylhydroquinone (TBHQ), which was added after lipid oxidation. Data for growth performance were collected from 5 time periods of a two-phase feeding program (Phase 1 = d 0 to 12 and Phase 2 = d 13 to 34). Serum and liver samples were collected from one pig per pen, which had initial BW closest to average BW to determine oxidative status on d 34. RESULTS: Oxidized maize oil was heated for 12 h at 185 °C with 12 L/min of air, yielding a peroxide value (PV) of 5.98 mEq O2/kg and TBARS of 0.11 mg MDA eq/g. Addition of TBHQ to diets containing oxidized maize oil decreased PV by 37% and increased the oil stability index by 69%. Final BW, ADG, ADFI, and G:F of pigs were not different among the four dietary treatments. However, pigs fed oxidized maize oil tended (P <  0.08) to increase hepatosomatic index by 5% compared with those fed unoxidized oil, and this was not affected by adding TBHQ. The serum vitamin E concentration of pigs fed oxidized maize oil was less (P < 0.03) than pigs fed unoxidized oil, but this reduction was not reversed by adding TBHQ. Finally, the serum and liver selenium concentration were not different among the treatments. CONCLUSIONS: The addition of TBHQ did not affect growth performance and vitamin E status in pigs fed moderately oxidized maize oil, but TBHQ reduced lipid oxidation, enhanced the oil stability, and appeared to reduce oxidative stress.

6.
Artigo em Inglês | MEDLINE | ID: mdl-30057893

RESUMO

Poison of intestinal induce severe health problems in human infants and young animals due to contaminating foods and feedstuffs. With the emergence of public health concerns and high-speed diffuse of drug-opposition of bacteria, the adoption of antimicrobial peptides as potential candidates in treating pathogen infections raised up. Nature Microcin J25 (MccJ25), a class of lasso peptides separated from a fecal strain of E. coli, has been replied to display powerful antimicrobial behavior. Herein, the study was to assess the usefulness of biogenic MccJ25 in the prophylaxis of ETEC K88 infection in IPEC-J2 cells. In vitro antimicrobial activity against ETEC K88 and cytotoxicity of biogenic MccJ25 were determined first. To further understand how biogenic MccJ25 mediates its impact, ETEC K88 adhesion in cells, membrane permeability [as indicated by reduced release of lactate dehydrogenase (LDH)], transepithelial electrical resistance (TEER), barrier function, and proinflammatory cytokines levels were determined in IPEC-J2 cells after treatment with biogenic MccJ25 and challenge with ETEC K88. Biogenic MccJ25 had a minimum inhibitory concentration of 0.25 µg/mL against ETEC K88, decreased ETEC K88 adhesion in cells and did not cause cytotoxicity toward cells. Furthermore, biogenic MccJ25 protects against ETEC-induced barrier dysfunction by increasing the TEER, decreasing the LDH and promoting tight junction proteins (TJPs) by promoting the assembly of occludin and claudin-1 in the tight junction complex. Biogenic MccJ25 was further found to relieve inflammation responses through modulation of interleukine-6, IL-8 and tumor necrosis factor-α levels via inhibition of mitogen-activated protein kinase (MAPK) and nuclear factor κB activation. In summary, biogenic MccJ25 can protects against ETEC K88-induced intestinal damage and inflammatory response, recommend the hidden adoption of biogenic MccJ25 as a novel prophylactic agent to reduce pathogen infection in animals, food or humans.


Assuntos
Anti-Infecciosos/metabolismo , Bacteriocinas/metabolismo , Escherichia coli Enterotoxigênica/efeitos dos fármacos , Células Epiteliais/microbiologia , Infecções por Escherichia coli/prevenção & controle , Aderência Bacteriana/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular , Humanos , Testes de Sensibilidade Microbiana , Modelos Biológicos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA