Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Int J Mol Sci ; 25(20)2024 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-39456787

RESUMO

Ovarian cancer presents a dire prognosis and high mortality rates, necessitating the exploration of alternative therapeutic avenues, particularly in the face of platinum-based chemotherapy resistance. Conventional treatments often overlook the metabolic implications of cancer, but recent research has highlighted the pivotal role of mitochondria in cancer pathogenesis and drug resistance. This study delves into the metabolic landscape of ovarian cancer treatment, focusing on modulating mitochondrial activity using methylene blue (MB). Investigating two epithelial ovarian cancer (EOC) cell lines, OV1369-R2 and OV1946, exhibiting disparate responses to carboplatin, we sought to identify metabolic nodes, especially those linked to mitochondrial dysfunction, contributing to chemo-resistance. Utilizing ARPE-19, a normal retinal epithelial cell line, as a control model, our study reveals MB's distinct cellular uptake, with ARPE-19 absorbing 5 to 7 times more MB than OV1946 and OV1369-R2. Treatment with 50 µM MB (MB-50) effectively curtailed the proliferation of both ovarian cancer cell lines. Furthermore, MB-50 exhibited the ability to quell glutaminolysis and the Warburg effect in cancer cell cultures. Regarding mitochondrial energetics, MB-50 spurred oxygen consumption, disrupted glycolytic pathways, and induced ATP depletion in the chemo-sensitive OV1946 cell line. These findings highlight the potential of long-term MB exposure as a strategy to improve the chemotherapeutic response in ovarian cancer cells. The ability of MB to stimulate oxygen consumption and enhance mitochondrial activity positions it as a promising candidate for ovarian cancer therapy, shedding light on the metabolic pressures exerted on mitochondria and their modulation by MB, thus contributing to a deeper understanding of mitochondrial dysregulation and the metabolic underpinnings of cancer cell proliferation.


Assuntos
Carboplatina , Proliferação de Células , Azul de Metileno , Mitocôndrias , Neoplasias Ovarianas , Humanos , Carboplatina/farmacologia , Feminino , Azul de Metileno/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia
2.
Cancers (Basel) ; 16(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38254843

RESUMO

Ovarian cancer remains a significant challenge, especially in platinum-resistant cases where treatment options are limited. In this study, we investigated the potential of methylene blue (MB) as a metabolic therapy and complementary treatment approach for ovarian cancer. Our findings demonstrated a significant in vivo reduction in the proliferation of TOV112D-based ovarian-cell-line xenografts. In this preclinical study, which used a carboplatin-resistant ovarian cancer tumor model implanted into mice, MB-mediated metabolic therapy exhibited superior tumor slowdown compared to carboplatin treatment alone. This indicates, for the first time, MB's potential as an alternative or adjuvant treatment, especially for resistant cases. Our in vitro study on TOV112D and ARPE-19 sheds light on the impact of such an MB-based metabolic therapy on mitochondrial energetics (respiration and membrane potential). MB showed a modulatory role in the oxygen consumption rate and the mitochondrial membrane potential. These results revealed, for the first time, that MB specifically targets TOV112D mitochondria and probably induces cell apoptosis. The differential response of normal (ARPE-19) and cancer (TOV112D) cells to the MB treatment suggests potential alterations in cancer cell mitochondria, opening avenues for therapeutic approaches that target the mitochondria. Overall, our findings suggest the efficacy of MB as a possible treatment for ovarian cancer and provide valuable insights into the mechanisms underlying the efficacy of methylene blue metabolic therapy in ovarian cancer treatment.

3.
Metabolites ; 11(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073567

RESUMO

Tumor cells are known to favor a glycolytic metabolism over oxidative phosphorylation (OxPhos), which takes place in mitochondria, to produce the energy and building blocks essential for cell maintenance and cell growth. This phenotypic property of tumor cells gives them several advantages over normal cells and is known as the Warburg effect. Tumors can be treated as a metabolic disease by targeting their bioenergetics capacity. Alpha-lipoic acid (ALA) and calcium hydroxycitrate (HCA) are two drugs known to target the Warburg effect in tumor cells and hence induce the mitochondria for ATP production. However, tumor cells, known to have an increased flux through glycolysis, are not able to handle the activation of their mitochondria by drugs or any other condition, leading to decoupling of gene regulation. In this study, these drug effects were studied by mimicking an inflammatory condition through the imposition of a hyperosmotic condition in Chinese hamster ovary (CHO) cells, which behave similarly to tumor cells. Indeed, CHO cells grown in high osmolarity conditions, using 200 mM mannitol, showed a pronounced Warburg effect phenotype. Our results show that hyperosmolar conditions triggered high-throughput glycolysis and enhanced glutaminolysis in CHO cells, such as during cancer cell proliferation in inflammatory tissue. Finally, we found that the hyperosmolar condition was correlated with increased mitochondrial membrane potential (ΔΨm) but mitochondrial horsepower seemed to vanish (h = Δp/ΔΨm), which may be explained by mitochondrial hyperfusion.

4.
Cell Rep Med ; 2(12): 100455, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35028603

RESUMO

Dendritic cells (DCs) excel at cross-presenting antigens, but their effectiveness as cancer vaccine is limited. Here, we describe a vaccination approach using mesenchymal stromal cells (MSCs) engineered to express the immunoproteasome complex (MSC-IPr). Such modification instills efficient antigen cross-presentation abilities associated with enhanced major histocompatibility complex class I and CD80 expression, de novo production of interleukin-12, and higher chemokine secretion. This cross-presentation capacity of MSC-IPr is highly dependent on their metabolic activity. Compared with DCs, MSC-IPr hold the ability to cross-present a vastly different epitope repertoire, which translates into potent re-activation of T cell immunity against EL4 and A20 lymphomas and B16 melanoma tumors. Moreover, therapeutic vaccination of mice with pre-established tumors efficiently controls cancer growth, an effect further enhanced when combined with antibodies targeting PD-1, CTLA4, LAG3, or 4-1BB under both autologous and allogeneic settings. Therefore, MSC-IPr constitute a promising subset of non-hematopoietic antigen-presenting cells suitable for designing universal cell-based cancer vaccines.


Assuntos
Vacinas Anticâncer/imunologia , Linfoma/imunologia , Melanoma Experimental/imunologia , Células-Tronco Mesenquimais/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Engenharia de Proteínas , Animais , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Reprogramação Celular , Células Dendríticas/imunologia , Feminino , Inibidores de Checkpoint Imunológico/farmacologia , Imunidade , Camundongos Endogâmicos C57BL , Fosforilação Oxidativa , Fenótipo , Vacinação
5.
Front Oncol ; 10: 573399, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042846

RESUMO

The occurrence of mitochondrial respiration has allowed evolution toward more complex and advanced life forms. However, its dysfunction is now also seen as the most probable cause of one of the biggest scourges in human health, cancer. Conventional cancer treatments such as chemotherapy, which mainly focus on disrupting the cell division process, have shown being effective in the attenuation of various cancers but also showing significant limits as well as serious sides effects. Indeed, the idea that cancer is a metabolic disease with mitochondria as the central site of the pathology is now emerging, and we provide here a review supporting this "novel" hypothesis re-actualizing past century Otto Warburg's thoughts. Our conclusion, while integrating literature, is that mitochondrial activity and, in particular, the activity of cytochrome c oxidase, complex IV of the ETC, plays a fundamental role in the effectiveness or non-effectiveness of chemotherapy, immunotherapy and probably radiotherapy treatments. We therefore propose that cancer cells mitochondrial singlet oxygen (1O2) dynamics may be an efficient target for metabolic therapy development.

6.
Biogerontology ; 21(6): 683-694, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32617766

RESUMO

Alzheimer's disease (AD) and cancer have much in common than previously recognized. These pathologies share common risk factors (inflammation and aging), with similar epidemiological and biochemical features such as impaired mitochondria. Metabolic reprogramming occurs during aging and inflammation. We assume that inflammation is directly responsible of the Warburg effect in cancer cells, with a decreased oxidative phosphorylation and a compensatory highthroughput glycolysis (HTG). Similarly, the Warburg effect in cancer is thought to support an alkaline intracellular pH (pHi), a key component of unrelenting cell growth. In the brain, inflammation results in increased secretion of lactate by astrocytes. The increased uptake of lactic acid by neurons results in the inverse Warburg effect, such as seen in AD. The neuronal activity is dampened by a fall of pHi. Pronounced cytosol acidification results in decreased mitochondrial energy yield as well as apoptotic cell death. The link between AD and cancer is reinforced by the fact that treatment aiming at restoring the mitochondrial activity have been experimentally shown to be effective in both diseases. Low carb diet, lipoic acid, and/or methylene blue could then appear promising in both sets of these clinically diverse diseases.


Assuntos
Doença de Alzheimer , Doenças Metabólicas , Neoplasias , Glicólise , Humanos , Concentração de Íons de Hidrogênio , Fosforilação Oxidativa
7.
PLoS One ; 15(4): e0231770, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32298377

RESUMO

The Warburg effect, a hallmark of cancer, has recently been identified as a metabolic limitation of Chinese Hamster Ovary (CHO) cells, the primary platform for the production of monoclonal antibodies (mAb). Metabolic engineering approaches, including genetic modifications and feeding strategies, have been attempted to impose the metabolic prevalence of respiration over aerobic glycolysis. Their main objective lies in decreasing lactate production while improving energy efficiency. Although yielding promising increases in productivity, such strategies require long development phases and alter entangled metabolic pathways which singular roles remain unclear. We propose to apply drugs used for the metabolic therapy of cancer to target the Warburg effect at different levels, on CHO cells. The use of α-lipoic acid, a pyruvate dehydrogenase activator, replenished the Krebs cycle through increased anaplerosis but resulted in mitochondrial saturation. The electron shuttle function of a second drug, methylene blue, enhanced the mitochondrial capacity. It pulled on anaplerotic pathways while reducing stress signals and resulted in a 24% increase of the maximum mAb production. Finally, the combination of both drugs proved to be promising for stimulating Krebs cycle activity and mitochondrial respiration. Therefore, drugs used in metabolic therapy are valuable candidates to understand and improve the metabolic limitations of CHO-based bioproduction.


Assuntos
Anticorpos Monoclonais/biossíntese , Ciclo do Ácido Cítrico/fisiologia , Glicólise/efeitos dos fármacos , Engenharia Metabólica/métodos , Azul de Metileno/farmacologia , Ácido Tióctico/farmacologia , Animais , Células CHO , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Glucose/metabolismo , Glutamina/metabolismo , Glicólise/fisiologia , Ácido Láctico/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Azul de Metileno/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Respiração , Ácido Tióctico/metabolismo
8.
Metabolites ; 8(1)2018 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-29495309

RESUMO

Because of their unique ability to modulate the immune system, mesenchymal stromal cells (MSCs) are widely studied to develop cell therapies for detrimental immune and inflammatory disorders. However, controlling the final cell phenotype and determining immunosuppressive function following cell amplification in vitro often requires prolonged cell culture assays, all of which contribute to major bottlenecks, limiting the clinical emergence of cell therapies. For instance, the multipotent Wharton's Jelly mesenchymal stem/stromal cells (WJMSC), extracted from human umbilical cord, exhibit immunosuppressive traits under pro-inflammatory conditions, in the presence of interferon-γ (IFNγ), and tumor necrosis factor-α (TNFα). However, WJMSCs require co-culture bioassays with immune cells, which can take days, to confirm their immunomodulatory function. Therefore, the establishment of robust cell therapies would benefit from fast and reliable characterization assays. To this end, we have explored the metabolic behaviour of WJMSCs in in vitro culture, to identify biomarkers that are specific to the cell passage effect and the loss of their immunosuppressive phenotype. We clearly show distinct metabolic behaviours comparing WJMSCs at the fourth (P4) and the late ninth (P9) passages, although both P4 and P9 cells do not exhibit significant differences in their low immunosuppressive capacity. Metabolomics data were analysed using an in silico modelling platform specifically adapted to WJMSCs. Of interest, P4 cells exhibit a glycolytic metabolism compared to late passage (P9) cells, which show a phosphorylation oxidative metabolism, while P4 cells show a doubling time of 29 h representing almost half of that for P9 cells (46 h). We also clearly show that fourth passage WJMSCs still express known immunosuppressive biomarkers, although, this behaviour shows overlapping with a senescence phenotype.

9.
Sci Rep ; 7(1): 9850, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28852166

RESUMO

Recent years have witnessed an increasing interest at understanding the role of myeloid-derived suppressor cells (MDSCs) in cancer-induced immunosuppression, with efforts to inhibit their maturation and/or their activity. We have thus modelled MDSCs central carbon metabolism and bioenergetics dynamic, calibrating the model using experimental data on in vitro matured mice bone marrow cells into MDSCs. The model was then used to probe the cells metabolic state and dynamics, performing a dynamic metabolic flux analysis (dMFA) study. Indeed, MDSCs maturation correlates with a high glycolytic flux contributing to up to 95% of the global ATP turnover rate, while most of the glucose-derived carbon enters the TCA cycle. Model simulations also reveal that pentose phosphate pathway and oxidative phosphorylation activities were kept at minimal levels to ensure NADPH production and anabolic precursors synthesis. Surprisingly, MDSCs immunosuppressive activity, i.e. L-arginine uptake, metabolism and endogenous synthesis, only consumes sparse quantities of energy-rich nucleotides (ATP and NADPH). Therefore, model simulations suggest that MDSCs exhibit a heterogeous metabolic profile similar to tumour cells. This behavior is probably an indirect immunosuppressive mechanism where MDSCs reduce the availability of carbon sources in the tumour periphery microenvironment, which could explain the dysfuntion and death of immune effector cells.


Assuntos
Metabolismo Energético , Imunomodulação , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Animais , Análise do Fluxo Metabólico , Redes e Vias Metabólicas , Metaboloma , Metabolômica/métodos , Camundongos
10.
Biotechnol Bioeng ; 114(12): 2907-2919, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28853155

RESUMO

The present study reveals that supplementing sodium acetate (NaAc) strongly stimulates riboflavin production in acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum ATCC 824 with xylose as carbon source. Riboflavin production increased from undetectable concentrations to ∼0.2 g L-1 (0.53 mM) when supplementing 60 mM NaAc. Of interest, solvents production and biomass yield were also promoted with fivefold acetone, 2.6-fold butanol, and 2.4-fold biomass adding NaAc. A kinetic metabolic model, developed to simulate ABE biosystem, with riboflavin production, revealed from a dynamic metabolic flux analysis (dMFA) simultaneous increase of riboflavin (ribA) and GTP (precursor of riboflavin) (PurM) synthesis flux rates under NaAc supplementation. The model includes 23 fluxes, 24 metabolites, and 72 kinetic parameters. It also suggested that NaAc condition has first stimulated the accumulation of intracellular metabolite intermediates during the acidogenic phase, which have then fed the solventogenic phase leading to increased ABE production. In addition, NaAc resulted in higher intracellular levels of NADH during the whole culture. Moreover, lower GTP-to-adenosine phosphates (ATP, ADP, AMP) ratio under NaAc supplemented condition suggests that GTP may have a minor role in the cell energetic metabolism compared to its contribution to riboflavin synthesis.


Assuntos
Acetona/metabolismo , Butanóis/metabolismo , Clostridium acetobutylicum/metabolismo , Etanol/metabolismo , Análise do Fluxo Metabólico/métodos , Riboflavina/biossíntese , Acetato de Sódio/metabolismo , Acetona/isolamento & purificação , Reatores Biológicos/microbiologia , Butanóis/isolamento & purificação , Clostridium acetobutylicum/crescimento & desenvolvimento , Simulação por Computador , Meios de Cultura/metabolismo , Etanol/isolamento & purificação , Fermentação , Modelos Biológicos , Riboflavina/isolamento & purificação
11.
Biomacromolecules ; 18(3): 965-975, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28122454

RESUMO

We have developed a heterodimeric coiled-coil system based on two complementary peptides, namely (EVSALEK)5 and (KVSALKE)5, or E and K, for the attachment of E-tagged biomolecules onto K-decorated biomaterials. We here explore two approaches to control the strength and the stability of the E/K coiled-coil complex, and thus its potential for the controlled release of biomolecules. Those are Leucine-to-Alanine mutations in the K peptide (4 peptides with 0 to 3 mutations) and multivalent presentation of the E peptide (6 bio-objects from monomeric to dimeric and n-meric). Using E-tagged growth factors and nanoparticles as models, SPR-based assays performed under continuous flow indicated that the release rate was strongly affected by both approaches independently, and that the strength of the capture could be finely tuned over a wide range (apparent dissociation constant from 0.12 pM to 270 nM). Further release assays carried out in well-plates showed that the multivalent presentation only had a significant influence in this setup since the wells were not rinsed under continuous flow.


Assuntos
Materiais Biocompatíveis/química , Preparações de Ação Retardada/química , Peptídeos/química , Sequência de Aminoácidos , Dicroísmo Circular , Dimerização , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Modelos Moleculares , Mutação , Nanopartículas/química
12.
Acta Biomater ; 37: 69-82, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27039978

RESUMO

UNLABELLED: Multifunctional constructs providing a proper environment for adhesion and growth of selected cell types are needed for most tissue engineering and regenerative medicine applications. In this context, vinylsulfone (VS)-modified dextran was proposed as a matrix featuring low-fouling properties as well as multiple versatile moieties. The displayed VS groups could indeed react with thiol, amine or hydroxyl groups, be it for surface grafting, crosslinking or subsequent tethering of biomolecules. In the present study, a library of dextran-VS was produced, grafted to aminated substrates and characterized in terms of degree of VS modification (%VS), cell-repelling properties and potential for the oriented grafting of cysteine-tagged peptides. As a bioactive coating of vascular implants, ECM peptides (e.g. RGD) as well as vascular endothelial growth factor (VEGF) were co-immobilized on one of the most suitable dextran-VS coating (%VS=ca. 50% of saccharides units). Both RGD and VEGF were efficiently tethered at high densities (ca. 1nmol/cm(2) and 50fmol/cm(2), respectively), and were able to promote endothelial cell adhesion as well as proliferation. The latter was enhanced to the same extent as with soluble VEGF and proved selective to endothelial cells over smooth muscle cells. Altogether, multiple biomolecules could be efficiently incorporated into a dextran-VS construct, while maintaining their respective biological activity. STATEMENT OF SIGNIFICANCE: This work addresses the need for multifunctional coatings and selective cell response inherent to many tissue engineering and regenerative medicine applications, for instance, vascular graft. More specifically, a library of dextrans was first generated through vinylsulfone (VS) modification. Thoroughly selected dextran-VS provided an ideal platform for unbiased study of cell response to covalently grafted biomolecules. Considering that processes such as healing and angiogenesis require multiple factors acting synergistically, vascular endothelial growth factor (VEGF) was then co-immobilized with the cell adhesive RGD peptide within our dextran coating through a relevant strategy featuring orientation and specificity. Altogether, both adhesive and proliferative cues could be incorporated into our construct with additive, if not synergetic, effects.


Assuntos
Adesivos/química , Materiais Revestidos Biocompatíveis/química , Dextranos/química , Células Endoteliais da Veia Umbilical Humana/metabolismo , Oligopeptídeos/química , Fator A de Crescimento do Endotélio Vascular/química , Proliferação de Células , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/classificação , Humanos
13.
Biomacromolecules ; 16(11): 3445-54, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26393367

RESUMO

Numerous strategies have been proposed to decorate biomaterials with growth factors (GFs) for tissue engineering applications; their practicability as clinical tools, however, remains uncertain. We previously presented two complementary amphipathic peptides, namely, E5 and K5, which could be utilized as tags to direct GF capture onto organic materials via E5/K5 coiled-coil interactions. We here investigated their potential as mediators of GF physical adsorption. Enzyme-linked immunosorbent assays highlighted that both electrostatic and hydrophobic interactions could contribute to the adsorption process, without interfering with the peptides propensity for coiled-coil interactions. E5-tagged vascular endothelial growth factor, in particular, was efficiently adsorbed to poly(allylamine)-functionalized polystyrene, was maintained in a bioactive state and was steadily liberated over several days with little initial burst. This simple immobilization procedure was successfully applied to poly(ethylene terephthalate) films. Altogether, our data demonstrated that coil-tag-directed adsorption is a tunable, versatile and straightforward strategy to decorate biomaterials with GFs.


Assuntos
Proteínas Imobilizadas/química , Peptídeos/química , Engenharia Tecidual/métodos , Fator A de Crescimento do Endotélio Vascular/química , Adsorção , Materiais Biocompatíveis/química , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Interações Hidrofóbicas e Hidrofílicas , Poliaminas/química , Polietilenotereftalatos/química , Eletricidade Estática , Propriedades de Superfície
14.
Stem Cell Rev Rep ; 10(1): 44-59, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24092527

RESUMO

There is currently no treatment for neurodegenerative diseases such as Parkinson's or Alzheimer's diseases. While spinal cord injury has no treatment either, nerve injuries are being treated with autologous grafts, a procedure that in turn translates into a loss of function in the donor area. The development of therapies for these pathologies has become urgent as population keeps on ageing. A promising direction of investigation is the use of regenerative techniques to re-grow healthy and functional tissue in the injured area. In this review article, various approaches currently investigated to promote neural regeneration are covered. Those include approaches based on (and many times combining) stem cell therapy, scaffolds made of hydrogel, electrospun fibers and conductive materials as well as the use of soluble or non-diffusible growth factors.


Assuntos
Regeneração Nervosa , Neurônios/citologia , Animais , Humanos , Regeneração Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Transplante de Células-Tronco , Células-Tronco/citologia , Alicerces Teciduais , Transplante de Tecidos
15.
Acta Biomater ; 9(6): 6806-13, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23485856

RESUMO

Chimeric growth factors may represent a powerful alternative to their natural counterparts for the functionalization of tissue-engineered scaffolds and applications in regenerative medicine. Their rational design should provide a simple, readily scalable production strategy while improving retention at the site of action. In that endeavor, we here report the synthesis of a chimeric protein corresponding to human vascular endothelial growth factor 165 being N-terminally fused to an E5 peptide tag (E5-VEGF). E5-VEGF was successfully expressed as a homodimer in mammalian cells. Following affinity purification, in vitro surface plasmon resonance biosensing and cell survival assays confirmed diffusible E5-VEGF ability to bind to its receptor ectodomains, while observed morphological phenotypes confirmed its anti-apoptotic features. Additional surface plasmon resonance assays highlighted that E5-VEGF could be specifically captured with high stability when interacting with covalently immobilized K5 peptide (a synthetic peptide designed to bind to the E5 moiety of chimeric hVEGF). This immobilization strategy was applied to glass substrates and chimeric hVEGF was shown to be maintained in a functionally active state following capture. Altogether, our data demonstrated that stable hVEGF capture can be performed via coiled-coil interactions without impacting hVEGF bioactivity, thus opening up the way to future applications in the field of tissue engineering and regenerative medicine.


Assuntos
Proteínas de Fluorescência Verde/química , Engenharia de Proteínas/métodos , Receptores de Fatores de Crescimento/química , Receptores de Fatores de Crescimento/ultraestrutura , Proteínas Recombinantes de Fusão/síntese química , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/ultraestrutura , Sítios de Ligação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/ultraestrutura , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/ultraestrutura , Fator A de Crescimento do Endotélio Vascular/genética
16.
J Biotechnol ; 164(4): 469-78, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23403402

RESUMO

In an effort to quantitatively assess the impact of recombinant protein expression on the primary metabolism of mammalian cells in culture, we have employed an efficient inducible expression system and conducted a comparative study of the intracellular flux map distribution with and without the induction of recombinant protein synthesis. Cells were grown in parallel semi-continuous cultures with various singly and uniformly labeled substrates and the resulting mass isotopomer distributions of lactate and extracellular amino acids were measured by mass spectrometry. These distributions were used to quantify the main intracellular fluxes. The analysis revealed that, under mild hypothermic conditions, the onset of protein expression is correlated with small but significant changes in several key pathways related to ATP and NADPH formation. More specifically, we observed that induced cells exhibit a more efficient utilization of glucose, characterized by an increased flux of pyruvate into the TCA cycle. In contrast, the catabolic rates of most amino acids remained relatively unaffected. Such analysis is instrumental to guide the identification of robust biomarkers of productivity, as well as the development of medium formulations optimized for recombinant protein production.


Assuntos
Isótopos de Carbono/metabolismo , Redes e Vias Metabólicas , Biologia Molecular/métodos , Biologia de Sistemas/métodos , Trifosfato de Adenosina/metabolismo , Aminoácidos/metabolismo , Animais , Células CHO , Contagem de Células , Cricetinae , Cricetulus , Espaço Extracelular/metabolismo , Cinética , Ácido Láctico/metabolismo , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , NADP/metabolismo
17.
Biochem Biophys Res Commun ; 425(4): 724-9, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22885179

RESUMO

Suppression of tumour-specific T-cell functions by myeloid-derived suppressor cells (MDSCs) is a dominant mechanism of tumour escape. MDSCs express two enzymes, i.e. inducible nitric oxide synthase (iNOS) and arginase (ARG1), which metabolize the semi-essential amino acid L-arginine (L-Arg) whose bioavailability is crucial for T-cell proliferation and functions. Recently, we showed that glutaminolysis supports MDSC maturation process by ensuring the supply of intermediates and energy. In this work, we used an immortalized cell line derived from mouse MDSCs (MSC-1 cell line) to further investigate the role of L-glutamine (L-Gln) in the maintenance of MDSC immunosuppressive activity. Culturing MSC-1 cells in L-Gln-limited medium inhibited iNOS activity, while ARG1 was not affected. MSC-1 cells inhibited Jukat cell growth without any noticeable effect on their viability. The characterization of MSC-1 cell metabolic profile revealed that L-Gln is an important precursor of lactate production via the NADP(+)-dependent malic enzyme, which co-produces NADPH. Moreover, the TCA cycle activity was down-regulated in the absence of L-Gln and the cell bioenergetic status was deteriorated accordingly. This strongly suggests that iNOS activity, but not that of ARG1, is related to an enhanced central carbon metabolism and a high bioenergetic status. Taken altogether, our results suggest that the control of glutaminolysis fluxes may represent a valuable target for immunotherapy.


Assuntos
Ciclo do Ácido Cítrico , Glutamina/metabolismo , Tolerância Imunológica , Células Mieloides/imunologia , Evasão Tumoral , Animais , Arginase/metabolismo , Linhagem Celular , Metabolismo Energético , Humanos , Terapia de Imunossupressão , Células Jurkat , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo
18.
BMC Cell Biol ; 13: 18, 2012 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-22762146

RESUMO

BACKGROUND: The tumor microenvironment contains a vast array of pro- and anti-inflammatory cytokines that alter myelopoiesis and lead to the maturation of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs). Incubating bone marrow (BM) precursors with a combination of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-6 (IL-6) generated a tumor-infiltrating MDSC-like population that impaired anti-tumor specific T-cell functions. This in vitro experimental approach was used to simulate MDSC maturation, and the cellular metabolic response was then monitored. A complementary experimental model that inhibited L-arginine (L-Arg) metabolizing enzymes in MSC-1 cells, an immortalized cell line derived from primary MDSCs, was used to study the metabolic events related to immunosuppression. RESULTS: Exposure of BM cells to GM-CSF and IL-6 activated, within 24 h, L-Arg metabolizing enzymes which are responsible for the MDSCs immunosuppressive potential. This was accompanied by an increased uptake of L-glutamine (L-Gln) and glucose, the latter being metabolized by anaerobic glycolysis. The up-regulation of nutrient uptake lead to the accumulation of TCA cycle intermediates and lactate as well as the endogenous synthesis of L-Arg and the production of energy-rich nucleotides. Moreover, inhibition of L-Arg metabolism in MSC-1 cells down-regulated central carbon metabolism activity, including glycolysis, glutaminolysis and TCA cycle activity, and led to a deterioration of cell bioenergetic status. The simultaneous increase of cell specific concentrations of ATP and a decrease in ATP-to-ADP ratio in BM-derived MDSCs suggested cells were metabolically active during maturation. Moreover, AMP-activated protein kinase (AMPK) was activated during MDSC maturation in GM-CSF and IL-6-treated cultures, as revealed by the continuous increase of AMP-to-ATP ratios and the phosphorylation of AMPK. Likewise, AMPK activity was decreased in MSC-1 cells when L-Arg metabolizing enzymes were inhibited. Finally, inhibition of AMPK activity by the specific inhibitor Compound C (Comp-C) resulted in the inhibition of L-Arg metabolizing enzyme activity and abolished MDSCs immunosuppressive activity. CONCLUSIONS: We anticipate that the inhibition of AMPK and the control of metabolic fluxes may be considered as a novel therapeutic target for the recovery of the immunosurveillance process in cancer-bearing hosts.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Interleucina-6/farmacologia , Células Mieloides/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Arginina/metabolismo , Células da Medula Óssea/citologia , Células Cultivadas , Glucose/metabolismo , Glutamina/metabolismo , Glicólise , Humanos , Terapia de Imunossupressão , Células Mieloides/citologia , Células Mieloides/metabolismo
19.
Immunobiology ; 217(8): 808-15, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22656888

RESUMO

Major advances in dissecting mechanisms of NO-induced down-regulation of the anti-tumour specific T-cell function have been accomplished during the last decade. In this work, we studied the effects of a NO donor (AT38) on leukaemic Jurkat cell bioenergetics. Culturing Jurkat cells in the presence of AT38 triggered irreversible inhibition of cell respiration, led to the depletion of 50% of the intracellular ATP content and induced the arrest of cell proliferation and the loss of cell viability. Although a deterioration of the overall metabolic activity has been observed, glycolysis was stimulated, as revealed by the increase of glucose uptake and lactate accumulation rates as well as by the up-regulation of GLUT-1 and PFK-1 mRNA levels. In the presence of NO, cell ATP was rapidly consumed by energy-requiring apoptosis mechanisms; under a glucose concentration of about 12.7mM, cell death was switched from apoptosis into necrosis. Exposure of Jurkat cells to DMSO (1%, v/v), SA and AT55, the non-NO releasing moiety of AT38, failed to modulate neither cell proliferation nor bioenergetics. Thus, as for all NSAIDs, beneficial effects of AT38 on tumour regression are accompanied by the suppression of the immune system. We then showed that pre-treating Jurkat cells with low concentration of cyclosporine A, a blocker of the mitochondrial transition pore, attenuates AT38-induced inhibition of cell proliferation and suppresses cell death. Finally, we have studied and compared the effects of nitrite and nitrate on Jurkat cells to those of NO and we are providing evidence that nitrate, which is considered as a biologically inert anion, has a concentration and time-dependent immunosuppressive potential.


Assuntos
Metabolismo Energético/imunologia , Óxido Nítrico/imunologia , Trifosfato de Adenosina/imunologia , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Respiração Celular/imunologia , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Glucose/imunologia , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Glicólise/efeitos dos fármacos , Glicólise/imunologia , Humanos , Células Jurkat , Lactatos/imunologia , Lactatos/metabolismo , Leucemia de Células T/genética , Leucemia de Células T/imunologia , Leucemia de Células T/metabolismo , Necrose/imunologia , Nitratos/farmacologia , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Fosfofrutoquinase-1/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nitrito de Sódio/farmacologia , Fatores de Tempo
20.
Biochem Biophys Res Commun ; 405(4): 538-44, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21256824

RESUMO

Alternatively activated macrophages have been implicated in the therapeutic activity of biodegradable chitosan on wound healing, however, the mechanisms of phenotypic differentiation are still unclear.In vitro, macrophages stimulated with high doses of chitosan (≥ 500 µg/mL) were reported to produce low-level markers associated with alternative activation (arginase-1) as well as classical activation (nitric oxide), and to undergo apoptosis. In this study, we tested the hypothesis that 40 kDa biodegradable chitosan (5-500 µg/mL) is sufficient to polarize mouse bone marrow-derived macrophages (BMDM) in vitro to an alternatively activated phenotype. Control cultures were stimulated with IL-4 (alternative activation), IFN-γ/LPS (classical activation), 1 µm diameter latex beads (phagocytosis), or left untreated. After 48 h of in vitro exposure, BMDM phagocytosed fluorescent chitosan particles or latex beads, and remained viable and metabolically active, although some cells detached with increasing chitosan and latex bead dosage. Arginase-1 was over 100-fold more strongly induced by IL-4 than by chitosan, which induced only sporadic and weak arginase-1 activity over untreated BMDM, and no nitric oxide. IFN-γ/LPS stimulated nitric oxide production and arginase-1 activity and high concentrations of inflammatory cytokines (IL-6, IL-1ß, TNF-α, MIP-1α/MIP-1ß), while latex beads stimulated nitric oxide and not arginase-1 activity. Chitosan or latex bead exposure, but not IL-4, tended to promote the release of several chemokines (MIP-1α/ß, GM-CSF, RANTES, IL-1ß), while all treatments promoted MCP-1 release. These data show that chitosan phagocytosis is not sufficient to polarize BMDM to the alternative or the classical pathway, suggesting that biodegradable chitosan elicits alternatively activated macrophages in vivo through indirect mechanisms.


Assuntos
Quimiocinas/metabolismo , Quitosana/farmacologia , Ativação de Macrófagos , Macrófagos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Animais , Arginase/metabolismo , Meios de Contraste/farmacologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microesferas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA