Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Org Inorg Au ; 4(3): 319-328, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38855338

RESUMO

As the SIRTi analogue series (HL1-HL6) show potent antitumor activity in vitro, we synthesized their corresponding zinc(II) complexes (ZnL1-ZnL6) and investigated their potential as anticancer agents. The Zn(II) complexes showed substantially greater cytotoxicity than HL1-HL6 alone in several cancer cell-types. Notably, distinct structure-activity relationships confirmed the significance of tert-butyl (ZnL2) pharmacophore inclusion in their activity. ZnL2 complexes were found to transmetalate with copper ions inside cells, causing the formation of redox-active copper complexes that induced reactive oxygen species (ROS) production, mitochondrial membrane depolarization, ATP decay, and cell death. This is the first study to exhibit Zn(II) complexes that mediate their activity via transmetalation with copper ions to undergo paraptosis cell death pathway. To further confirm if the SIRT1/2 inhibitory property of SIRTi analogues is conserved, a docking simulation study is performed. The binding affinity and specific interactions of the Cu(II) complex obtained after transmetalation with ZnL2 were found to be higher for SIRT2 (K i = 0.06 µM) compared to SIRT1 (K i = 0.25 µM). Thus, the concurrent regulation of several biological targets using a single drug has been shown to have synergistic therapeutic effects, which are crucial for the effective treatment of cancer.

2.
Commun Biol ; 6(1): 1292, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129585

RESUMO

Intra-tumor heterogeneity contributes to treatment failure and poor survival in urothelial bladder carcinoma (UBC). Analyzing transcriptome from a UBC cohort, we report that intra-tumor transcriptomic heterogeneity indicates co-existence of tumor cells in epithelial and mesenchymal-like transcriptional states and bi-directional transition between them occurs within and between tumor subclones. We model spontaneous and reversible transition between these partially heritable states in cell lines and characterize their population dynamics. SMAD3, KLF4 and PPARG emerge as key regulatory markers of the transcriptional dynamics. Nutrient limitation, as in the core of large tumors, and radiation treatment perturb the dynamics, initially selecting for a transiently resistant phenotype and then reconstituting heterogeneity and growth potential, driving adaptive evolution. Dominance of transcriptional states with low PPARG expression indicates an aggressive phenotype in UBC patients. We propose that phenotypic plasticity and dynamic, non-genetic intra-tumor heterogeneity modulate both the trajectory of disease progression and adaptive treatment response in UBC.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Bexiga Urinária , PPAR gama , Neoplasias da Bexiga Urinária/terapia , Carcinoma de Células de Transição/patologia , Progressão da Doença
3.
Biophys J ; 122(19): 3909-3923, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37598292

RESUMO

In the epithelium, cell density and cell proliferation are closely connected to each other through contact inhibition of proliferation (CIP). Depending on cell density, CIP proceeds through three distinct stages: the free-growing stage at low density, the pre-epithelial transition stage at medium density, and the post-epithelial transition stage at high density. Previous studies have elucidated how cell morphology, motion, and mechanics vary in these stages. However, it remains unknown whether cellular metabolism also has a density-dependent behavior. By measuring the mitochondrial membrane potential at different cell densities, here we reveal a heterogeneous landscape of metabolism in the epithelium, which appears qualitatively distinct in three stages of CIP and did not follow the trend of other CIP-associated parameters, which increases or decreases monotonically with increasing cell density. Importantly, epithelial cells established a collective metabolic heterogeneity exclusively in the pre-epithelial transition stage, where the multicellular clusters of high- and low-potential cells emerged. However, in the post-epithelial transition stage, the metabolic potential field became relatively homogeneous. Next, to study the underlying dynamics, we constructed a system biology model, which predicted the role of cell proliferation in metabolic potential toward establishing collective heterogeneity. Further experiments indeed revealed that the metabolic pattern spatially correlated with the proliferation capacity of cells, as measured by the nuclear localization of a pro-proliferation protein, YAP. Finally, experiments perturbing the actomyosin contractility revealed that, while metabolic heterogeneity was maintained in the absence of actomyosin contractility, its ab initio emergence depended on the latter. Taken together, our results revealed a density-dependent collective heterogeneity in the metabolic field of a pre-epithelial transition-stage epithelial monolayer, which may have significant implications for epithelial form and function.


Assuntos
Actomiosina , Inibição de Contato , Actomiosina/metabolismo , Células Epiteliais/metabolismo , Epitélio/metabolismo , Proliferação de Células
4.
iScience ; 26(7): 106964, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37426354

RESUMO

The Epithelial-to-Mesenchymal Transition (EMT) is a hallmark of cancer metastasis and morbidity. EMT is a non-binary process, and cells can be stably arrested en route to EMT in an intermediate hybrid state associated with enhanced tumor aggressiveness and worse patient outcomes. Understanding EMT progression in detail will provide fundamental insights into the mechanisms underlying metastasis. Despite increasingly available single-cell RNA sequencing (scRNA-seq) data that enable in-depth analyses of EMT at the single-cell resolution, current inferential approaches are limited to bulk microarray data. There is thus a great need for computational frameworks to systematically infer and predict the timing and distribution of EMT-related states at single-cell resolution. Here, we develop a computational framework for reliable inference and prediction of EMT-related trajectories from scRNA-seq data. Our model can be utilized across a variety of applications to predict the timing and distribution of EMT from single-cell sequencing data.

5.
Drugs ; 78(16): 1717-1740, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30392114

RESUMO

Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship.


Assuntos
Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Animais , Terapia Combinada , Humanos , Neoplasias Pulmonares/fisiopatologia , Neoplasias Pulmonares/terapia , Terapia de Alvo Molecular , Estresse Oxidativo , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/terapia , Fumar/efeitos adversos
6.
J R Soc Interface ; 14(136)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29187638

RESUMO

Epithelial-mesenchymal transition (EMT) plays key roles during embryonic development, wound healing and cancer metastasis. Cells in a partial EMT or hybrid epithelial/mesenchymal (E/M) phenotype exhibit collective cell migration, forming clusters of circulating tumour cells-the primary drivers of metastasis. Activation of cell-cell signalling pathways such as Notch fosters a partial or complete EMT, yet the mechanisms enabling cluster formation remain poorly understood. Using an integrated computational-experimental approach, we examine the role of Numb-an inhibitor of Notch intercellular signalling-in mediating EMT and clusters formation. We show via an mathematical model that Numb inhibits a full EMT by stabilizing a hybrid E/M phenotype. Consistent with this observation, knockdown of Numb in stable hybrid E/M cells H1975 results in a full EMT, thereby showing that Numb acts as a brake for a full EMT and thus behaves as a 'phenotypic stability factor' by modulating Notch-driven EMT. By generalizing the mathematical model to a multi-cell level, Numb is predicted to alter the balance of hybrid E/M versus mesenchymal cells in clusters, potentially resulting in a higher tumour-initiation ability. Finally, Numb correlates with a worse survival in multiple independent lung and ovarian cancer datasets, hence confirming its relationship with increased cancer aggressiveness.


Assuntos
Transição Epitelial-Mesenquimal , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Receptores Notch/metabolismo , Comunicação Celular , Linhagem Celular , Movimento Celular , Biologia Computacional , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Teóricos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
7.
Cancer Res ; 77(16): 4414-4425, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28646020

RESUMO

Despite favorable responses to initial therapy, small-cell lung cancer (SCLC) relapse occurs within a year and exhibits resistance to multiple drugs. Because of limited accessibility of patient tissues for research purposes, SCLC patient-derived xenografts (PDX) have provided the best opportunity to address this limitation. Here, we sought to identify novel mechanisms involved in SCLC chemoresistance. Through in-depth proteomic profiling, we identified MCAM as a markedly upregulated surface receptor in chemoresistant SCLC cell lines and in chemoresistant PDX compared with matched treatment-naïve tumors. MCAM depletion in chemoresistant cells reduced cell proliferation and reduced the IC50 inhibitory concentration of chemotherapeutic drugs in vitro This MCAM-mediated sensitization to chemotherapy occurred via SOX2-dependent upregulation of mitochondrial 37S ribosomal protein 1/ATP-binding cassette subfamily C member 1 (MRP1/ABCC1) and the PI3/AKT pathway. Metabolomic profiling revealed that MCAM modulated lactate production in chemoresistant cells that exhibit a distinct metabolic phenotype characterized by low oxidative phosphorylation. Our results suggest that MCAM may serve as a novel therapeutic target to overcome chemoresistance in SCLC. Cancer Res; 77(16); 4414-25. ©2017 AACR.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/metabolismo , Animais , Antígeno CD146/genética , Antígeno CD146/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição SOXB1/genética , Transdução de Sinais , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia
8.
J Vis Exp ; (122)2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28448023

RESUMO

Phenotypic plasticity refers to a phenomenon in which cells transiently gain traits of another lineage. During carcinoma progression, phenotypic plasticity drives invasion, dissemination and metastasis. Indeed, while most of the studies of phenotypic plasticity have been in the context of epithelial-derived carcinomas, it turns out sarcomas, which are mesenchymal in origin, also exhibit phenotypic plasticity, with a subset of sarcomas undergoing a phenomenon that resembles a mesenchymal-epithelial transition (MET). Here, we developed a method comprising the miR-200 family and grainyhead-like 2 (GRHL2) to mimic this MET-like phenomenon observed in sarcoma patient samples.We sequentially express GRHL2 and the miR-200 family using cell transduction and transfection, respectively, to better understand the molecular underpinnings of these phenotypic transitions in sarcoma cells. Sarcoma cells expressing miR-200s and GRHL2 demonstrated enhanced epithelial characteristics in cell morphology and alteration of epithelial and mesenchymal biomarkers. Future studies using these methods can be used to better understand the phenotypic consequences of MET-like processes on sarcoma cells, such as migration, invasion, metastatic propensity, and therapy resistance.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , MicroRNAs/metabolismo , Sarcoma/patologia , Fatores de Transcrição/metabolismo , Contagem de Células , Linhagem Celular Tumoral , Células Epiteliais/patologia , Regulação da Expressão Gênica , Humanos , Transfecção
9.
Mol Cell Biol ; 36(19): 2503-13, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27402864

RESUMO

Phenotypic plasticity involves a process in which cells transiently acquire phenotypic traits of another lineage. Two commonly studied types of phenotypic plasticity are epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). In carcinomas, EMT drives invasion and metastatic dissemination, while MET is proposed to play a role in metastatic colonization. Phenotypic plasticity in sarcomas is not well studied; however, there is evidence that a subset of sarcomas undergo an MET-like phenomenon. While the exact mechanisms by which these transitions occur remain largely unknown, it is likely that some of the same master regulators that drive EMT and MET in carcinomas also act in sarcomas. In this study, we combined mathematical models with bench experiments to identify a core regulatory circuit that controls MET in sarcomas. This circuit comprises the microRNA 200 (miR-200) family, ZEB1, and GRHL2. Interestingly, combined expression of miR-200s and GRHL2 further upregulates epithelial genes to induce MET. This effect is phenocopied by downregulation of either ZEB1 or the ZEB1 cofactor, BRG1. In addition, an MET gene expression signature is prognostic for improved overall survival in sarcoma patients. Together, our results suggest that a miR-200, ZEB1, GRHL2 gene regulatory network may drive sarcoma cells to a more epithelial-like state and that this likely has prognostic relevance.


Assuntos
Proteínas de Ligação a DNA/genética , Transição Epitelial-Mesenquimal , MicroRNAs/genética , Sarcoma/patologia , Fatores de Transcrição/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Modelos Teóricos , Invasividade Neoplásica , Metástase Neoplásica , Prognóstico , Sarcoma/genética , Análise de Sobrevida , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA