Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Transl Med ; 22(1): 389, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671504

RESUMO

BACKGROUND: Myxoid liposarcoma (MLS) displays a distinctive tumor microenvironment and is characterized by the FUS::DDIT3 fusion oncogene, however, the precise functional contributions of these two elements remain enigmatic in tumor development. METHODS: To study the cell-free microenvironment in MLS, we developed an experimental model system based on decellularized patient-derived xenograft tumors. We characterized the cell-free scaffold using mass spectrometry. Subsequently, scaffolds were repopulated using sarcoma cells with or without FUS::DDIT3 expression that were analyzed with histology and RNA sequencing. RESULTS: Characterization of cell-free MLS scaffolds revealed intact structure and a large variation of protein types remaining after decellularization. We demonstrated an optimal culture time of 3 weeks and showed that FUS::DDIT3 expression decreased cell proliferation and scaffold invasiveness. The cell-free MLS microenvironment and FUS::DDIT3 expression both induced biological processes related to cell-to-cell and cell-to-extracellular matrix interactions, as well as chromatin remodeling, immune response, and metabolism. Data indicated that FUS::DDIT3 expression more than the microenvironment determined the pre-adipocytic phenotype that is typical for MLS. CONCLUSIONS: Our experimental approach opens new means to study the tumor microenvironment in detail and our findings suggest that FUS::DDIT3-expressing tumor cells can create their own extracellular niche.


Assuntos
Lipossarcoma Mixoide , Proteínas de Fusão Oncogênica , Proteína FUS de Ligação a RNA , Microambiente Tumoral , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Lipossarcoma Mixoide/patologia , Lipossarcoma Mixoide/metabolismo , Lipossarcoma Mixoide/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/genética , Alicerces Teciduais/química , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
3.
Cancers (Basel) ; 15(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38136303

RESUMO

Unraveling the complex network between cancer cells and their tumor microenvironment is of clinical importance, as it might allow for the identification of new targets for cancer treatment. Cytokines and growth factors secreted by various cell types present in the tumor microenvironment have the potential to affect the challenging subpopulation of cancer stem cells showing treatment-resistant properties as well as aggressive features. By using various model systems, we investigated how the breast cancer stem cell-initiating growth factor progranulin influenced the secretion of cancer-associated proteins. In monolayer cultures, progranulin induced secretion of several inflammatory-related cytokines, such as interleukin (IL)-6 and -8, in a sortilin-dependent manner. Further, IL-6 increased the cancer stem fraction similarly to progranulin in the breast cancer cell lines MCF7 and MDA-MB-231 monitored by the surrogate mammosphere-forming assay. In a cohort of 63 patient-derived scaffold cultures cultured with breast cancer cells, we observed significant correlations between IL-6 and progranulin secretion, clearly validating the association between IL-6 and progranulin also in human-based microenvironments. In conclusion, the interplay between progranulin and IL-6 highlights a dual breast cancer stem cell-promoting function via sortilin, further supporting sortilin as a highly relevant therapeutic target for aggressive breast cancer.

4.
Biomedicines ; 10(3)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35327426

RESUMO

The therapeutic options for patients with relapsed or metastatic myxoid liposarcoma (MLS) remain scarce and there is currently no targeted therapy available. Inhibition of the HSP90 family of chaperones has been suggested as a possible therapeutic option for patients with MLS. However, the clinical effect of different HSP90 inhibitors vary considerably and no comparative study in MLS has been performed. Here, we evaluated the effects of the HSP90 inhibitors 17-DMAG, AUY922 and STA-9090 on MLS cell lines and in an MLS patient-derived xenograft (PDX) model. Albeit all drugs inhibited in vitro growth of MLS cell lines, the in vivo responses were discrepant. Whereas 17-DMAG inhibited tumor growth, AUY922 surprisingly led to increased tumor growth and a more aggressive morphological phenotype. In vitro, 17-DMAG and STA-9090 reduced the activity of the MAPK and PI3K/AKT signaling pathways, whereas AUY922 led to a compensatory upregulation of downstream ERK. Furthermore, all three tested HSP90 inhibitors displayed a synergistic combination effect with trabectidin, but not with doxorubicin. In conclusion, our results indicate that different HSP90 inhibitors, albeit having the same target, can vary significantly in downstream effects and treatment outcomes. These results should be considered before proceeding into clinical trials against MLS or other malignancies.

5.
Front Oncol ; 12: 816894, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186752

RESUMO

Myxoid liposarcoma is one of the most common sarcoma entities characterized by FET fusion oncogenes. Despite a generally favorable prognosis of myxoid liposarcoma, chemotherapy resistance remains a clinical problem. This cancer stem cell property is associated with JAK-STAT signaling, but the link to the myxoid-liposarcoma-specific FET fusion oncogene FUS-DDIT3 is not known. Here, we show that ectopic expression of FUS-DDIT3 resulted in elevated levels of STAT3 and phosphorylated STAT3. RNA sequencing identified 126 genes that were regulated by both FUS-DDIT3 expression and JAK1/2 inhibition using ruxolitinib. Sixty-six of these genes were connected in a protein interaction network. Fifty-three and 29 of these genes were confirmed as FUS-DDIT3 and STAT3 targets, respectively, using public chromatin immunoprecipitation sequencing data sets. Enriched gene sets among the 126 regulated genes included processes related to cytokine signaling, adipocytokine signaling, and chromatin remodeling. We validated CD44 as a target gene of JAK1/2 inhibition and as a potential cancer stem cell marker in myxoid liposarcoma. Finally, we showed that FUS-DDIT3 interacted with phosphorylated STAT3 in association with subunits of the SWI/SNF chromatin remodeling complex and PRC2 repressive complex. Our data show that the function of FUS-DDIT3 is closely connected to JAK-STAT signaling. Detailed deciphering of molecular mechanisms behind tumor progression opens up new avenues for targeted therapies in sarcomas and leukemia characterized by FET fusion oncogenes.

6.
Front Bioeng Biotechnol ; 9: 711977, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869246

RESUMO

The field of 3D cell cultures is currently emerging, and material development is essential in striving toward mimicking the microenvironment of a native tissue. By using the response of reporter cells to a 3D environment, a comparison between materials can be assessed, allowing optimization of material composition and microenvironment. Of particular interest, the response can be different in a normoxic and hypoxic culturing conditions, which in turn may alter the conclusion regarding a successful recreation of the microenvironment. This study aimed at determining the role of such environments to the conclusion of a better resembling cell culture model to native tissue. Here, the breast cancer cell line MCF7 was cultured in normoxic and hypoxic conditions on patient-derived scaffolds and compared at mRNA and protein levels to cells cultured on 3D printed scaffolds, Matrigel, and conventional 2D plastics. Specifically, a wide range of mRNA targets (40), identified as being regulated upon hypoxia and traditional markers for cell traits (cancer stem cells, epithelial-mesenchymal transition, pluripotency, proliferation, and differentiation), were used together with a selection of corresponding protein targets. 3D cultured cells were vastly different to 2D cultured cells in gene expression and protein levels on the majority of the selected targets in both normoxic and hypoxic culturing conditions. By comparing Matrigel and 3DPS-cultured cells to cells cultured on patient-derived scffolds, differences were also noted along all categories of mRNA targets while specifically for the GLUT3 protein. Overall, cells cultured on patient-derived scaffolds closely resembled cells cultured on 3D printed scaffolds, contrasting 2D and Matrigel-cultured cells, regardless of a normoxic or hypoxic culturing condition. Thus, these data support the use of either a normoxic or hypoxic culturing condition in assays using native tissues as a blueprint to optimize material composition.

7.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573289

RESUMO

The growing attention toward the benefits of single-cell RNA sequencing (scRNA-seq) is leading to a myriad of computational packages for the analysis of different aspects of scRNA-seq data. For researchers without advanced programing skills, it is very challenging to combine several packages in order to perform the desired analysis in a simple and reproducible way. Here we present DIscBIO, an open-source, multi-algorithmic pipeline for easy, efficient and reproducible analysis of cellular sub-populations at the transcriptomic level. The pipeline integrates multiple scRNA-seq packages and allows biomarker discovery with decision trees and gene enrichment analysis in a network context using single-cell sequencing read counts through clustering and differential analysis. DIscBIO is freely available as an R package. It can be run either in command-line mode or through a user-friendly computational pipeline using Jupyter notebooks. We showcase all pipeline features using two scRNA-seq datasets. The first dataset consists of circulating tumor cells from patients with breast cancer. The second one is a cell cycle regulation dataset in myxoid liposarcoma. All analyses are available as notebooks that integrate in a sequential narrative R code with explanatory text and output data and images. R users can use the notebooks to understand the different steps of the pipeline and will guide them to explore their scRNA-seq data. We also provide a cloud version using Binder that allows the execution of the pipeline without the need of downloading R, Jupyter or any of the packages used by the pipeline. The cloud version can serve as a tutorial for training purposes, especially for those that are not R users or have limited programing skills. However, in order to do meaningful scRNA-seq analyses, all users will need to understand the implemented methods and their possible options and limitations.


Assuntos
Biomarcadores/análise , Biologia Computacional/métodos , RNA-Seq/métodos , Análise de Célula Única/métodos , Animais , Neoplasias da Mama/sangue , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Ciclo Celular/genética , Conjuntos de Dados como Assunto , Feminino , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lipossarcoma Mixoide/diagnóstico , Lipossarcoma Mixoide/genética , Camundongos , Células Neoplásicas Circulantes/patologia , Software , Peixe-Zebra
8.
Data Brief ; 31: 105860, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32637480

RESUMO

Patient-derived scaffolds (PDSs) generated from primary breast cancer tumors can be used to model the tumor microenvironment in vitro. Patient-derived scaffolds are generated by repeated detergent washing, removing all cells. Here, we analyzed the protein composition of 15 decellularized PDSs using liquid chromatography-mass spectrometry/mass spectrometry. One hundred forty-three proteins were detected and their relative abundance was calculated using a reference sample generated from all PDSs. We performed heatmap analysis of all the detected proteins to display their expression patterns across different PDSs together with pathway enrichment analysis to reveal which processes that were connected to PDS protein composition. This protein dataset together with clinical information is useful to investigators studying the microenvironment of breast cancers. Further, after repopulating PDSs with either MCF7 or MDA-MB-231 cells, we quantified their gene expression profiles using RNA sequencing. These data were also compared to cells cultured in conventional 2D conditions, as well as to cells cultured as xenografts in immune-deficient mice. We investigated the overlap of genes regulated between these different culture conditions and performed pathway enrichment analysis of genes regulated by both PDS and xenograft cultures compared to 2D in both cell lines to describe common processes associated with both culture conditions. Apart from our described analyses of these systems, these data are useful when comparing different experimental model systems. Downstream data analyses and interpretations can be found in the research article "Patient-derived scaffolds uncover breast cancer promoting properties of the microenvironment" [1].

9.
PLoS One ; 15(7): e0236187, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32692762

RESUMO

The definitive characterization of common cancer stem cell (CSCs) subpopulations in breast cancer subtypes with distinct genotypic and phenotypic features remains an ongoing challenge. In this study, we have used a non-biased genome wide screening approach to identify transcriptional networks that may be specific to the CSC subpopulations in both luminal and basal breast cancer subtypes. In depth studies of three CSC-enriched breast cancer cell lines representing various subtypes of breast cancer revealed a striking hyperactivation of the mevalonate metabolic pathway in comparison to control cells. The upregulation of metabolic networks is a key feature of tumour cells securing growth and proliferative capabilities and dysregulated mevalonate metabolism has been associated with tumour malignancy and cellular transformation in breast cancer. Furthermore, accumulating evidence suggests that Simvastatin therapy, a mevalonate pathway inhibitor, could affect breast cancer progression and reduce breast cancer recurrence. When detailing the mevalonate pathway in breast cancer using a single-cell qPCR, we identified the mevalonate precursor enzyme, HMGCS1, as a specific marker of CSC-enriched subpopulations within both luminal and basal tumour subtypes. Down-regulation of HMGCS1 also decreased the CSC fraction and function in various model systems, suggesting that HMGCS1 is essential for CSC-activities in breast cancer in general. These data was supported by strong associations between HMGCS1 expression and aggressive features, such as high tumour grade, p53 mutations as well as ER-negativity in lymph node positive breast cancer. Importantly, loss of HMGCS1 also had a much more pronounced effect on CSC-activities compared to treatment with standard doses of Simvastatin. Taken together, this study highlights HMGCS1 as a potential gatekeeper for dysregulated mevalonate metabolism important for CSC-features in both luminal and basal breast cancer subtypes. Pharmacological inhibition of HMGCS1 could therefore be a superior novel treatment approach for breast cancer patients via additional CSC blocking functions.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Hidroximetilglutaril-CoA Sintase/metabolismo , Ácido Mevalônico/metabolismo , Modelos Biológicos , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/patologia , Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Estudos de Coortes , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Hidroximetilglutaril-CoA Sintase/genética , Linfonodos/patologia , Redes e Vias Metabólicas , Invasividade Neoplásica
10.
Cells ; 9(3)2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204559

RESUMO

Single-cell analysis enables detailed molecular characterization of cells in relation to cell type, genotype, cell state, temporal variations, and microenvironment. These studies often include the analysis of individual genes and networks of genes. The total amount of RNA also varies between cells due to important factors, such as cell type, cell size, and cell cycle state. However, there is a lack of simple and sensitive methods to quantify the total amount of RNA, especially mRNA. Here, we developed a method to quantify total mRNA levels in single cells based on global reverse transcription followed by quantitative PCR. Standard curve analyses of diluted RNA and sorted cells showed a wide dynamic range, high reproducibility, and excellent sensitivity. Single-cell analysis of three sarcoma cell lines and human fibroblasts revealed cell type variations, a lognormal distribution of total mRNA levels, and up to an eight-fold difference in total mRNA levels among the cells. The approach can easily be combined with targeted or global gene expression profiling, providing new means to study cell heterogeneity at an individual gene level and at a global level. This method can be used to investigate the biological importance of variations in the total amount of mRNA in healthy as well as pathological conditions.


Assuntos
Sarcoma/genética , Sarcoma/patologia , Análise de Célula Única , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Poliadenilação/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Transcriptoma/genética
11.
Biomaterials ; 235: 119705, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31978840

RESUMO

Tumor cells interact with the microenvironment that specifically supports and promotes tumor development. Key components in the tumor environment have been linked to various aggressive cancer features and can further influence the presence of subpopulations of cancer cells with specific functions, including cancer stem cells and migratory cells. To model and further understand the influence of specific microenvironments we have developed an experimental platform using cell-free patient-derived scaffolds (PDSs) from primary breast cancers infiltrated with standardized breast cancer cell lines. This PDS culture system induced a series of orchestrated changes in differentiation, epithelial-mesenchymal transition, stemness and proliferation of the cancer cell population, where an increased cancer stem cell pool was confirmed using functional assays. Furthermore, global gene expression profiling showed that PDS cultures were similar to xenograft cultures. Mass spectrometry analyses of cell-free PDSs identified subgroups based on their protein composition that were linked to clinical properties, including tumor grade. Finally, we observed that an induction of epithelial-mesenchymal transition-related genes in cancer cells growing on the PDSs were significantly associated with clinical disease recurrences in breast cancer patients. Patient-derived scaffolds thus mimics in vivo-like growth conditions and uncovers unique information about the malignancy-inducing properties of tumor microenvironment.


Assuntos
Neoplasias da Mama , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Humanos , Recidiva Local de Neoplasia , Células-Tronco Neoplásicas , Microambiente Tumoral
12.
Front Genet ; 10: 500, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191614

RESUMO

Breast cancer tumors display different cellular phenotypes. A growing body of evidence points toward a population of cancer stem cells (CSCs) that is important for metastasis and treatment resistance, although the characteristics of these cells are incomplete. We used mammosphere formation assay and label-retention assay as functional cellular approaches to enrich for cells with different degree of CSC properties in the breast cancer cell line MDA-MB-231 and performed single-cell RNA sequencing. We clustered the cells based on their gene expression profiles and identified three subpopulations, including a CSC-like population. The cell clustering into these subpopulations overlapped with the cellular enrichment approach applied. To molecularly define these groups, we identified genes differentially expressed between the three subpopulations which could be matched to enriched gene sets. We also investigated the transition process from CSC-like cells into more differentiated cell states. In the CSC population we found 14 significantly upregulated genes. Some of these potential breast CSC markers are associated to reported stem cell properties and clinical survival data, but further experimental validation is needed to confirm their cellular functions. Detailed characterization of CSCs improve our understanding of mechanisms for tumor progression and contribute to the identification of new treatment targets.

13.
EMBO Rep ; 20(5)2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30962207

RESUMO

Members of the human FET family of RNA-binding proteins, comprising FUS, EWSR1, and TAF15, are ubiquitously expressed and engage at several levels of gene regulation. Many sarcomas and leukemias are characterized by the expression of fusion oncogenes with FET genes as 5' partners and alternative transcription factor-coding genes as 3' partners. Here, we report that the N terminus of normal FET proteins and their oncogenic fusion counterparts interact with the SWI/SNF chromatin remodeling complex. In contrast to normal FET proteins, increased fractions of FET oncoproteins bind SWI/SNF, indicating a deregulated and enhanced interaction in cancer. Forced expression of FET oncogenes caused changes of global H3K27 trimethylation levels, accompanied by altered gene expression patterns suggesting a shift in the antagonistic balance between SWI/SNF and repressive polycomb group complexes. Thus, deregulation of SWI/SNF activity could provide a unifying pathogenic mechanism for the large group of tumors caused by FET fusion oncoproteins. These results may help to develop common strategies for therapy.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Cromatina/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular Tumoral , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Metilação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/genética , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Proteínas de Ligação a RNA/genética
14.
Int J Cancer ; 145(2): 435-449, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650179

RESUMO

Myxoid liposarcoma (MLS) shows extensive intratumoural heterogeneity with distinct subpopulations of tumour cells. Despite improved survival of MLS patients, existing therapies have shortcomings as they fail to target all tumour cells. The nature of chemotherapy-resistant cells in MLS remains unknown. Here, we show that MLS cell lines contained subpopulations of cells that can form spheres, efflux Hoechst dye and resist doxorubicin, all properties attributed to cancer stem cells (CSCs). By single-cell gene expression, western blot, phospho-kinase array, immunoprecipitation, immunohistochemistry, flow cytometry and microarray analysis we showed that a subset of MLS cells expressed JAK-STAT genes with active signalling. JAK1/2 inhibition via ruxolitinib decreased, while stimulation with LIF increased, phosphorylation of STAT3 and the number of cells with CSC properties indicating that JAK-STAT signalling controlled the number of cells with CSC features. We also show that phosphorylated STAT3 interacted with the SWI/SNF complex. We conclude that MLS contains JAK-STAT-regulated subpopulations of cells with CSC features. Combined doxorubicin and ruxolitinib treatment targeted both proliferating cells as well as cells with CSC features, providing new means to circumvent chemotherapy resistance in treatment of MLS patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Lipossarcoma Mixoide/metabolismo , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Janus Quinases/metabolismo , Lipossarcoma Mixoide/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Nitrilas , Fosforilação , Pirazóis/farmacologia , Pirimidinas , Fatores de Transcrição STAT/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo
15.
J Mol Biol ; 429(24): 3909-3924, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29045817

RESUMO

The highly fine-tuned dynamics of cell cycle gene expression have been intensely studied for several decades. However, some previous observations may be difficult to fully decouple from artifacts induced by traditional cell synchronization procedures. In addition, bulk cell measurements may have disguised intricate details. Here, we address this by sorting and transcriptomic sequencing of single cells progressing through the cell cycle without prior synchronization. Genes and pathways with known cell cycle roles are confirmed, associated regulatory sequence motifs are determined, and we also establish ties between other biological processes and the unsynchronized cell cycle. Importantly, we find the G1 phase to be surprisingly heterogeneous, with transcriptionally distinct early and late time points. We additionally note that mRNAs accumulate to reach maximum total levels at mitosis and find that stable transcripts show reduced cell-to-cell variability, consistent with the transcriptional burst model of gene expression. Our study provides the first detailed transcriptional profiling of an unsynchronized human cell cycle.


Assuntos
Biomarcadores Tumorais/genética , Ciclo Celular/genética , Perfilação da Expressão Gênica , Lipossarcoma Mixoide/genética , Análise de Célula Única/métodos , Transcriptoma , Humanos , Lipossarcoma Mixoide/patologia , Mitose/genética , Células Tumorais Cultivadas
16.
Sci Rep ; 7: 45219, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28332609

RESUMO

The need to perform gene expression profiling using next generation sequencing and quantitative real-time PCR (qPCR) on small sample sizes and single cells is rapidly expanding. However, to analyse few molecules, preamplification is required. Here, we studied global and target-specific preamplification using 96 optimised qPCR assays. To evaluate the preamplification strategies, we monitored the reactions in real-time using SYBR Green I detection chemistry followed by melting curve analysis. Next, we compared yield and reproducibility of global preamplification to that of target-specific preamplification by qPCR using the same amount of total RNA. Global preamplification generated 9.3-fold lower yield and 1.6-fold lower reproducibility than target-specific preamplification. However, the performance of global preamplification is sufficient for most downstream applications and offers several advantages over target-specific preamplification. To demonstrate the potential of global preamplification we analysed the expression of 15 genes in 60 single cells. In conclusion, we show that global preamplification simplifies targeted gene expression profiling of small sample sizes by a flexible workflow. We outline the pros and cons for global preamplification compared to target-specific preamplification.


Assuntos
Perfilação da Expressão Gênica/métodos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Análise de Célula Única/métodos , Transcriptoma , Linhagem Celular Tumoral , Perfilação da Expressão Gênica/normas , Humanos , RNA Mensageiro/química , Reação em Cadeia da Polimerase em Tempo Real/normas , Padrões de Referência , Reprodutibilidade dos Testes , Análise de Célula Única/normas
17.
J Pathol ; 238(5): 689-99, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26865464

RESUMO

Fusion oncogenes are among the most common types of oncogene in human cancers. The gene rearrangements result in new combinations of regulatory elements and functional protein domains. Here we studied a subgroup of sarcomas and leukaemias characterized by the FET (FUS, EWSR1, TAF15) family of fusion oncogenes, including FUS-DDIT3 in myxoid liposarcoma (MLS). We investigated the regulatory mechanisms, expression levels and effects of FUS-DDIT3 in detail. FUS-DDIT3 showed a lower expression than normal FUS at both the mRNA and protein levels, and single-cell analysis revealed a lack of correlation between FUS-DDIT3 and FUS expression. FUS-DDIT3 transcription was regulated by the FUS promotor, while its mRNA stability depended on the DDIT3 sequence. FUS-DDIT3 protein stability was regulated by protein interactions through the FUS part, rather than the leucine zipper containing DDIT3 part. In addition, in vitro as well as in vivo FUS-DDIT3 protein expression data displayed highly variable expression levels between individual MLS cells. Combined mRNA and protein analyses at the single-cell level showed that FUS-DDIT3 protein expression was inversely correlated to the expression of cell proliferation-associated genes. We concluded that FUS-DDIT3 is uniquely regulated at the transcriptional as well as the post-translational level and that its expression level is important for MLS tumour development. The FET fusion oncogenes are potentially powerful drug targets and detailed knowledge about their regulation and functions may help in the development of novel treatments.


Assuntos
Biomarcadores Tumorais/metabolismo , Proliferação de Células , Lipossarcoma Mixoide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Meia-Vida , Humanos , Lipossarcoma Mixoide/genética , Lipossarcoma Mixoide/patologia , Proteínas de Fusão Oncogênica/genética , Regiões Promotoras Genéticas , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica , Transfecção
18.
Oncotarget ; 7(1): 433-45, 2016 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-26595521

RESUMO

Myxoid sarcoma (MLS) is one of the most common types of malignant soft tissue tumors. MLS is characterized by the FUS-DDIT3 or EWSR1-DDIT3 fusion oncogenes that encode abnormal transcription factors. The receptor tyrosine kinase (RTK) encoding RET was previously identified as a putative downstream target gene to FUS-DDIT3 and here we show that cultured MLS cells expressed phosphorylated RET together with its ligand Persephin. Treatment with RET specific kinase inhibitor Vandetanib failed to reduce RET phosphorylation and inhibit cell growth, suggesting that other RTKs may phosphorylate RET. A screening pointed out EGFR and ERBB3 as the strongest expressed phosphorylated RTKs in MLS cells. We show that ERBB3 formed nuclear and cytoplasmic complexes with RET and both RTKs were previously reported to form complexes with EGFR. The formation of RTK hetero complexes could explain the observed Vandetanib resistence in MLS. EGFR and ERBB3 are clients of HSP90 that help complex formation and RTK activation. Treatment of cultured MLS cells with HSP90 inhibitor 17-DMAG, caused loss of RET and ERBB3 phosphorylation and lead to rapid cell death. Treatment of MLS xenograft carrying Nude mice resulted in massive necrosis, rupture of capillaries and hemorrhages in tumor tissues. We conclude that complex formation between RET and other RTKs may cause RTK inhibitor resistance. HSP90 inhibitors can overcome this resistance and are thus promising drugs for treatment of MLS/RCLS.


Assuntos
Benzoquinonas/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Lactamas Macrocíclicas/farmacologia , Lipossarcoma Mixoide/tratamento farmacológico , Proteínas Proto-Oncogênicas c-ret/metabolismo , Receptor ErbB-3/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Imuno-Histoquímica , Lipossarcoma Mixoide/genética , Lipossarcoma Mixoide/metabolismo , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Confocal , Mutação , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-ret/genética , Receptor ErbB-3/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
PLoS One ; 9(11): e113110, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25393000

RESUMO

Myxoid/round-cell liposarcoma (MLS/RCLS) is characterized by either the fusion gene FUS-DDIT3 or the less commonly occurring EWSR1-DDIT3 and most cases carry few or no additional cytogenetic changes. There are conflicting reports concerning the status and role of TP53 in MLS/RCLS. Here we analysed four MLS/RCLS derived cell lines for TP53 mutations, expression and function. Three SV40 transformed cell lines expressed normal TP53 proteins. Irradiation caused normal posttranslational modifications of TP53 and induced P21 expression in two of these cell lines. Transfection experiments showed that the FUS-DDIT3 fusion protein had no effects on irradiation induced TP53 responses. Ion Torrent AmpliSeq screening, using the Cancer Hotspot panel, showed no dysfunctional or disease associated alleles/mutations. In conclusion, our results suggest that most MLS/RCLS cases carry functional TP53 genes and this is consistent with the low numbers of secondary mutations observed in this tumor entity.


Assuntos
Lipossarcoma Mixoide/genética , Mutação , Proteína Supressora de Tumor p53/genética , Linhagem Celular Transformada , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Inibidor de Quinase Dependente de Ciclina p21/genética , Instabilidade Genômica , Humanos , Lipossarcoma Mixoide/metabolismo , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA