Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Res Sq ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38746124

RESUMO

An upregulation of angiotensin-converting enzyme (ACE) expression strengthens the immune activity of myeloid lineage cells as a natural functional regulation mechanism in our immunity. ACE10/10 mice, possessing increased ACE expression in macrophages, exhibit enhanced anti-tumor immunity and anti-bactericidal effects compared to those of wild type (WT) mice, while the detailed molecular mechanism has not been elucidated yet. In this report, we demonstrate that peroxisome proliferator-activated receptor alpha (PPARα) is a key molecule in the functional upregulation of macrophages induced by ACE. The expression of PPARα, a transcription factor regulating fatty acid metabolism-associated gene expressions, was upregulated in ACE-overexpressing macrophages. To pinpoint the role of PPARα in the enhanced immune function of ACE-overexpressing macrophages, we established a line with myeloid lineage-selective PPARα depletion employing the Lysozyme 2 (LysM)-Cre system based on ACE 10/10 mice (named A10-PPARα-Cre). Interestingly, A10-PPARα-Cre mice exhibited larger B16-F10-originated tumors than original ACE 10/10 mice. PPARα depletion impaired cytokine production and antigen-presenting activity in ACE-overexpressing macrophages, resulting in reduced tumor antigen-specific CD8+ T cell activity. Additionally, the anti-bactericidal effect was also impaired in A10-PPARα-Cre mice, resulting in similar bacterial colonization to WT mice in Methicillin-Resistant Staphylococcus aureus (MRSA) infection. PPARα depletion downregulated phagocytic activity and bacteria killing in ACE-overexpressing macrophages. Moreover, THP-1-ACE-derived macrophages, as a human model, expressing upregulated PPARα exhibited enhanced cytotoxicity against B16-F10 cells and MRSA killing. These activities were further enhanced by the PPARα agonist, WY 14643, while abolished by the antagonist, GW6471, in THP-1-ACE cells. Thus, PPARα is an indispensable molecule in ACE-dependent functional upregulation of macrophages in both mice and humans.

2.
Cell Rep ; 42(10): 113221, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37815914

RESUMO

Advanced prostate cancers are treated with therapies targeting the androgen receptor (AR) signaling pathway. While many tumors initially respond to AR inhibition, nearly all develop resistance. It is critical to understand how prostate tumor cells respond to AR inhibition in order to exploit therapy-induced phenotypes prior to the outgrowth of treatment-resistant disease. Here, we comprehensively characterize the effects of AR blockade on prostate cancer metabolism using transcriptomics, metabolomics, and bioenergetics approaches. The metabolic response to AR inhibition is defined by reduced glycolysis, robust elongation of mitochondria, and increased reliance on mitochondrial oxidative metabolism. We establish DRP1 activity and MYC signaling as mediators of AR-blockade-induced metabolic phenotypes. Rescuing DRP1 phosphorylation after AR inhibition restores mitochondrial fission, while rescuing MYC restores glycolytic activity and prevents sensitivity to complex I inhibition. Our study provides insight into the regulation of treatment-induced metabolic phenotypes and vulnerabilities in prostate cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Humanos , Masculino , Androgênios/metabolismo , Linhagem Celular Tumoral , Neoplasias da Próstata/genética , Neoplasias de Próstata Resistentes à Castração/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores Androgênicos/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Transdução de Sinais
3.
EMBO Rep ; 24(10): e56380, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37548091

RESUMO

Oxidative phosphorylation and glycolysis are the dominant ATP-generating pathways in mammalian metabolism. The balance between these two pathways is often shifted to execute cell-specific functions in response to stimuli that promote activation, proliferation, or differentiation. However, measurement of these metabolic switches has remained mostly qualitative, making it difficult to discriminate between healthy, physiological changes in energy transduction or compensatory responses due to metabolic dysfunction. We therefore present a broadly applicable method to calculate ATP production rates from oxidative phosphorylation and glycolysis using Seahorse XF Analyzer data and empirical conversion factors. We quantify the bioenergetic changes observed during macrophage polarization as well as cancer cell adaptation to in vitro culture conditions. Additionally, we detect substantive changes in ATP utilization upon neuronal depolarization and T cell receptor activation that are not evident from steady-state ATP measurements. This method generates a single readout that allows the direct comparison of ATP produced from oxidative phosphorylation and glycolysis in live cells. Additionally, the manuscript provides a framework for tailoring the calculations to specific cell systems or experimental conditions.


Assuntos
Smegmamorpha , Animais , Smegmamorpha/metabolismo , Mitocôndrias/metabolismo , Metabolismo Energético , Glicólise , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Mamíferos/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-37463465

RESUMO

PURPOSE: The authors describe a case of a Retinal capillary hemangioblastoma (RCH) in a pediatric patient with von Hippel-Lindau (VHL) syndrome that was successfully treated with systemic belzutifan. METHODS: Case report - The Clinical course was documented with serial fundus exams and multimodal imaging, including Optos wide field fundus photography and optical coherence tomography. A literature review was conducted to look for similar cases and/or discussion. RESULTS: A left RCH was noted on a standard VHL surveillance retinal exam of a then 15-year-old male with VHL syndrome. Over the course of 17 months this RCH was treated with focal laser therapy, photodynamic therapy (PDT), cryotherapy, bevacizumab injection, and endo laser ablation. Complications of these treatments included sub retinal fluid (SRF) and vitreomacular traction (VMT) necessitating laser retinopexy, scleral buckle, and pars plana vitrectomy with membrane stripping. After a 6-month interval from the last local therapy (endo laser treatment), there was minimal regression of the lesion and many concerning features persisted. At 22 months from presentation, the patient started belzutifan 120 mg PO daily with subsequent regression in size and less perfusion to the hemangioblastoma within 4 months. The patient is tolerating the systemic belzutifan with only the expected normocytic anemia and has not required transfusion therapy after 12 months of treatment. CONCLUSION: VHL disease is a rare and serious condition associated with multiple types of benign and malignant tumors. Belzutifan is tolerated in the adolescent population and can provide a systemic treatment alternative for VHL associated RCH.

5.
Cell Chem Biol ; 30(7): 811-827.e7, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37419112

RESUMO

Proteinaceous cysteines function as essential sensors of cellular redox state. Consequently, defining the cysteine redoxome is a key challenge for functional proteomic studies. While proteome-wide inventories of cysteine oxidation state are readily achieved using established, widely adopted proteomic methods such as OxICAT, Biotin Switch, and SP3-Rox, these methods typically assay bulk proteomes and therefore fail to capture protein localization-dependent oxidative modifications. Here we establish the local cysteine capture (Cys-LoC) and local cysteine oxidation (Cys-LOx) methods, which together yield compartment-specific cysteine capture and quantitation of cysteine oxidation state. Benchmarking of the Cys-LoC method across a panel of subcellular compartments revealed more than 3,500 cysteines not previously captured by whole-cell proteomic analysis. Application of the Cys-LOx method to LPS-stimulated immortalized murine bone marrow-derived macrophages (iBMDM), revealed previously unidentified, mitochondrially localized cysteine oxidative modifications upon pro-inflammatory activation, including those associated with oxidative mitochondrial metabolism.


Assuntos
Cisteína , Proteômica , Animais , Camundongos , Cisteína/metabolismo , Proteômica/métodos , Mitocôndrias/metabolismo , Proteoma/metabolismo , Oxirredução
6.
Cancer Cell ; 41(6): 1048-1060.e9, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37236196

RESUMO

Malignant tumors exhibit heterogeneous metabolic reprogramming, hindering the identification of translatable vulnerabilities for metabolism-targeted therapy. How molecular alterations in tumors promote metabolic diversity and distinct targetable dependencies remains poorly defined. Here we create a resource consisting of lipidomic, transcriptomic, and genomic data from 156 molecularly diverse glioblastoma (GBM) tumors and derivative models. Through integrated analysis of the GBM lipidome with molecular datasets, we identify CDKN2A deletion remodels the GBM lipidome, notably redistributing oxidizable polyunsaturated fatty acids into distinct lipid compartments. Consequently, CDKN2A-deleted GBMs display higher lipid peroxidation, selectively priming tumors for ferroptosis. Together, this study presents a molecular and lipidomic resource of clinical and preclinical GBM specimens, which we leverage to detect a therapeutically exploitable link between a recurring molecular lesion and altered lipid metabolism in GBM.


Assuntos
Ferroptose , Glioblastoma , Metabolismo dos Lipídeos , Humanos , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Ferroptose/genética , Ferroptose/fisiologia , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Recidiva Local de Neoplasia
7.
EMBO J ; 42(11): e111901, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36917141

RESUMO

Changes in mitochondrial morphology are associated with nutrient utilization, but the precise causalities and the underlying mechanisms remain unknown. Here, using cellular models representing a wide variety of mitochondrial shapes, we show a strong linear correlation between mitochondrial fragmentation and increased fatty acid oxidation (FAO) rates. Forced mitochondrial elongation following MFN2 over-expression or DRP1 depletion diminishes FAO, while forced fragmentation upon knockdown or knockout of MFN2 augments FAO as evident from respirometry and metabolic tracing. Remarkably, the genetic induction of fragmentation phenocopies distinct cell type-specific biological functions of enhanced FAO. These include stimulation of gluconeogenesis in hepatocytes, induction of insulin secretion in islet ß-cells exposed to fatty acids, and survival of FAO-dependent lymphoma subtypes. We find that fragmentation increases long-chain but not short-chain FAO, identifying carnitine O-palmitoyltransferase 1 (CPT1) as the downstream effector of mitochondrial morphology in regulation of FAO. Mechanistically, we determined that fragmentation reduces malonyl-CoA inhibition of CPT1, while elongation increases CPT1 sensitivity to malonyl-CoA inhibition. Overall, these findings underscore a physiologic role for fragmentation as a mechanism whereby cellular fuel preference and FAO capacity are determined.


Assuntos
Ácidos Graxos , Malonil Coenzima A , Ácidos Graxos/metabolismo , Malonil Coenzima A/metabolismo , Malonil Coenzima A/farmacologia , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Oxirredução , Mitocôndrias/metabolismo
8.
bioRxiv ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36711448

RESUMO

Proteinaceous cysteines function as essential sensors of cellular redox state. Consequently, defining the cysteine redoxome is a key challenge for functional proteomic studies. While proteome-wide inventories of cysteine oxidation state are readily achieved using established, widely adopted proteomic methods such as OxiCat, Biotin Switch, and SP3-Rox, they typically assay bulk proteomes and therefore fail to capture protein localization-dependent oxidative modifications. To obviate requirements for laborious biochemical fractionation, here, we develop and apply an unprecedented two step cysteine capture method to establish the Local Cysteine Capture (Cys-LoC), and Local Cysteine Oxidation (Cys-LOx) methods, which together yield compartment-specific cysteine capture and quantitation of cysteine oxidation state. Benchmarking of the Cys-LoC method across a panel of subcellular compartments revealed more than 3,500 cysteines not previously captured by whole cell proteomic analysis. Application of the Cys-LOx method to LPS stimulated murine immortalized bone marrow-derived macrophages (iBMDM), revealed previously unidentified mitochondria-specific inflammation-induced cysteine oxidative modifications including those associated with oxidative phosphorylation. These findings shed light on post-translational mechanisms regulating mitochondrial function during the cellular innate immune response.

9.
J Virol Methods ; 308: 114577, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35843366

RESUMO

Dengue virus (DENV) specific neutralizing and enhancing antibodies play crucial roles in dengue disease prevention and pathogenesis. DENV reporters are gaining popularity in the evaluation of these antibodies; their accessibility and acceptance may improve with more efficient production systems and indications of their antigenic equivalence to the wild-type virus. This study aimed to generate a replication competent luciferase-secreting DENV reporter (LucDENV2) and evaluate its feasibility in neutralizing and infection-enhancing antibody assays in comparison with wild-type DENV2, strain 16681, and a luciferase-secreting, single-round infectious DENV2 reporter (LucSIP). LucDENV2 replicated to similarly high levels as that of the parent 16681 virus in a commonly used mosquito cell line. LucDENV2 was neutralized in an antibody concentration-dependent manner by a monoclonal antibody specific to the flavivirus fusion loop and two antibodies specific to the E domain III, which closely resembled the neutralization patterns employing the LucSIP and wild-type DENV2. Parallel analysis of LucDENV2 and wild-type DENV2 revealed good agreement between the luciferase-based and focus-based neutralization and enhancement assays in a 96-well microplate format when employed against a set of clinical sera, suggesting comparable antigenic properties of LucDENV2 with those of the parent virus. The high-titer, replication competent, luciferase-secreting DENV reporter presented here should be a useful tool for fast and reliable quantitation of neutralizing and infection-enhancing antibodies in populations living in DENV-endemic areas.


Assuntos
Vírus da Dengue , Dengue , Animais , Anticorpos Bloqueadores , Anticorpos Neutralizantes , Anticorpos Antivirais , Vírus da Dengue/genética , Luciferases/genética , Proteínas do Envelope Viral
10.
PLoS Pathog ; 18(5): e1010500, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500035

RESUMO

Neutralizing antibodies are important correlates of protection against dengue. Yet, determinants of variation in neutralization across strains within the four dengue virus serotypes (DENV1-4) is imperfectly understood. Studies focus on structural DENV proteins, especially the envelope (E), the primary target of anti-DENV antibodies. Although changes in immune recognition (antigenicity) are often attributed to variation in epitope residues, viral processes influencing conformation and epitope accessibility also affect neutralizability, suggesting possible modulating roles of nonstructural proteins. We estimated effects of residue changes in all 10 DENV proteins on antigenic distances between 348 DENV collected from individuals living in Bangkok, Thailand (1994-2014). Antigenic distances were derived from response of each virus to a panel of twenty non-human primate antisera. Across 100 estimations, excluding 10% of virus pairs each time, 77 of 295 positions with residue variability in E consistently conferred antigenic effects; 52 were within ±3 sites of known binding sites of neutralizing human monoclonal antibodies, exceeding expectations from random assignments of effects to sites (p = 0.037). Effects were also identified for 16 sites on the stem/anchor of E which were only recently shown to become exposed under physiological conditions. For all proteins, except nonstructural protein 2A (NS2A), root-mean-squared-error (RMSE) in predicting distances between pairs held out in each estimation did not outperform sequences of equal length derived from all proteins or E, suggesting that antigenic signals present were likely through linkage with E. Adjusted for E, we identified 62/219 sites embedding the excess signals in NS2A. Concatenating these sites to E additionally explained 3.4% to 4.0% of observed variance in antigenic distances compared to E alone (50.5% to 50.8%); RMSE outperformed concatenating E with sites from any protein of the virus (ΔRMSE, 95%IQR: 0.01, 0.05). Our results support examining antigenic determinants beyond the DENV surface.


Assuntos
Vírus da Dengue , Dengue , Aminoácidos , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos/genética , Tailândia , Proteínas do Envelope Viral
11.
Cell Mol Gastroenterol Hepatol ; 13(4): 1095-1120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35017061

RESUMO

BACKGROUND AND AIMS: Phagocytosis (efferocytosis) of apoptotic neutrophils by macrophages anchors the resolution of intestinal inflammation. Efferocytosis prevents secondary necrosis and inhibits further inflammation, and also reprograms macrophages to facilitate tissue repair and promote resolution function. Macrophage efferocytosis and efferocytosis-dependent reprogramming are implicated in the pathogenesis of inflammatory bowel disease. We previously reported that absence of macrophage cyclooxygenase 2 (COX2) exacerbates inflammatory bowel disease-like intestinal inflammation. To elucidate the underlying pathogenic mechanism, we investigated here whether COX2 mediates macrophage efferocytosis and efferocytosis-dependent reprogramming, including intestinal epithelial repair capacity. METHODS: Using apoptotic neutrophils and synthetic apoptotic targets, we determined the effects of macrophage specific Cox2 knockout and pharmacological COX2 inhibition on the efferocytosis capacity of mouse primary macrophages. COX2-mediated efferocytosis-dependent eicosanoid lipidomics was determined by liquid chromatography tandem mass spectrometry. Small intestinal epithelial organoids were employed to assay the effects of COX2 on efferocytosis-dependent intestinal epithelial repair. RESULTS: Loss of COX2 impaired efferocytosis in mouse primary macrophages, in part, by affecting the binding capacity of macrophages for apoptotic cells. This effect was comparable to that of high-dose lipopolysaccharide and was accompanied by both dysregulation of macrophage polarization and the inhibited expression of genes involved in apoptotic cell binding. COX2 modulated the production of efferocytosis-dependent lipid inflammatory mediators that include the eicosanoids prostaglandin I2, prostaglandin E2, lipoxin A4, and 15d-PGJ2; and further affected secondary efferocytosis. Finally, macrophage efferocytosis induced, in a macrophage COX2-dependent manner, a tissue restitution and repair phenotype in intestinal epithelial organoids. CONCLUSIONS: Macrophage COX2 potentiates efferocytosis capacity and efferocytosis-dependent reprogramming, facilitating macrophage intestinal epithelial repair capacity.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Doenças Inflamatórias Intestinais , Fagocitose , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/farmacologia , Inflamação/patologia , Doenças Inflamatórias Intestinais/patologia , Macrófagos/metabolismo , Camundongos , Fagocitose/genética
12.
Retin Cases Brief Rep ; 16(4): 515-519, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32541433

RESUMO

PURPOSE: To present a case of idiopathic retinal vasculitis, aneurysms, and neuroretinitis syndrome that was successfully managed with serial intravitreal aflibercept injections. METHODS: Ophthalmic imaging and visual acuity were used to monitor disease state and track treatment methods to determine the most valuable combination of treatment medication and treatment interval. RESULTS: A 28-year-old woman with idiopathic retinal vasculitis, aneurysms, and neuroretinitis syndrome status after panretinal photocoagulation of both eyes presented with bilateral cystoid macular edema. We demonstrate successful management of retinal cystoid macular edema associated with idiopathic retinal vasculitis, aneurysms, and neuroretinitis syndrome using serial intravitreal aflibercept injections. CONCLUSION: Intravitreal aflibercept has a useful role in managing the potential retinal complications associated with idiopathic retinal vasculitis, aneurysms, and neuroretinitis syndrome and provides further insights into treatment of the later stages of this rare disease.


Assuntos
Aneurisma , Edema Macular , Vasculite Retiniana , Retinite , Adulto , Aneurisma/terapia , Inibidores da Angiogênese/uso terapêutico , Demência , Feminino , Perda Auditiva Central , Humanos , Injeções Intravítreas , Edema Macular/diagnóstico , Edema Macular/tratamento farmacológico , Edema Macular/etiologia , Atrofia Óptica , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão , Vasculite Retiniana/complicações , Vasculite Retiniana/diagnóstico , Vasculite Retiniana/tratamento farmacológico , Retinite/diagnóstico , Retinite/tratamento farmacológico
13.
Eur J Pain ; 26(1): 197-206, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34437747

RESUMO

BACKGROUND: Hypothalamic-Pituitary-Adrenal (HPA) axis dysregulation has been implicated in chronic widespread pain (CWP); the hallmark of fibromyalgia (FM). This is the first study to compare HPA axis changes in individuals with CWP and those at high risk of symptom development. METHODS: We sought to determine differences in morning and evening salivary cortisol levels in FM (n = 19), those at-risk (n = 20) and pain-free controls (n = 17). Risk factors included non-CWP pain, somatic symptoms, illness behaviour and sleep disturbance. We conducted the study in the absence of centrally acting medication, to address limitations of previous research. RESULTS: Repeated measures ANOVA revealed significant main effects of group (p = 0.003), and time of day (p = 0.002), with no significant interaction. Cortisol levels were higher in FM (p = 0.027) and at-risk (p = 0.003) groups, compared to controls, but there was no significant difference between FM and at-risk groups. The main effect of group remained significant with sleep problems (p = 0.021) and life events (p = 0.007), but was not significant with anxiety (p = 0.076) or depression (p = 0.098) scores as covariates. With sleep problems as a covariate, cortisol levels remained significantly higher only in the at-risk group (p = 0.017). CONCLUSIONS: This study indicates elevated salivary cortisol in FM and those at high risk, and identifies anxiety, depression and sleep problems as potential contributing factors. The results shed light on the dynamic relationship between stress, mood and sleep disorders and the brain's resilience to pain. SIGNIFICANCE: This study examines neurobiological changes in chronic widespread pain and high risk individuals. One strength of the study is the absence of centrally acting medication. We found high salivary cortisol common to Fibromyalgia and those at risk and identified contributing factors. Our results offer insight into the early mechanistic changes underlying Fibromyalgia development and open up possibilities for early diagnosis and prevention.


Assuntos
Dor Crônica , Fibromialgia , Humanos , Hidrocortisona , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Saliva
14.
Front Oncol ; 11: 665763, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968771

RESUMO

BACKGROUND: There is increasing evidence that adipocytes play an active role in the cancer microenvironment. We have previously reported that adipocytes interact with acute lymphoblastic leukemia (ALL) cells, contributing to chemotherapy resistance and treatment failure. In the present study, we investigated whether part of this resistance is due to adipocyte provision of lipids to ALL cells. METHODS: We cultured 3T3-L1 adipocytes, and tested whether ALL cells or ALL-released cytokines induced FFA release. We investigated whether ALL cells took up these FFA, and using fluorescent tagged BODIPY-FFA and lipidomics, evaluated which lipid moieties were being transferred from adipocytes to ALL. We evaluated the effects of adipocyte-derived lipids on ALL cell metabolism using a Seahorse XF analyzer and expression of enzymes important for lipid metabolism, and tested whether these lipids could protect ALL cells from chemotherapy. Finally, we evaluated a panel of lipid synthesis and metabolism inhibitors to determine which were affected by the presence of adipocytes. RESULTS: Adipocytes release free fatty acids (FFA) when in the presence of ALL cells. These FFA are taken up by the ALL cells and incorporated into triglycerides and phospholipids. Some of these lipids are stored in lipid droplets, which can be utilized in states of fuel deprivation. Adipocytes preferentially release monounsaturated FFA, and this can be attenuated by inhibiting the desaturating enzyme steroyl-CoA decarboxylase-1 (SCD1). Adipocyte-derived FFA can relieve ALL cell endogenous lipogenesis and reverse the cytotoxicity of pharmacological acetyl-CoA carboxylase (ACC) inhibition. Further, adipocytes alter ALL cell metabolism, shifting them from glucose to FFA oxidation. Interestingly, the unsaturated fatty acid, oleic acid, protects ALL cells from modest concentrations of chemotherapy, such as those that might be present in the ALL microenvironment. In addition, targeting lipid synthesis and metabolism can potentially reverse adipocyte protection of ALL cells. CONCLUSION: These findings uncover a previously unidentified interaction between ALL cells and adipocytes, leading to transfer of FFA for use as a metabolic fuel and macromolecule building block. This interaction may contribute to ALL resistance to chemotherapy, and could potentially be targeted to improve ALL treatment outcome.

15.
Cell Mol Gastroenterol Hepatol ; 11(2): 389-406, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32942044

RESUMO

BACKGROUND & AIMS: The etiology of nonalcoholic fatty liver disease (NAFLD) is poorly understood, with males and certain populations exhibiting markedly increased susceptibility. Using a systems genetics approach involving multi-omic analysis of ∼100 diverse inbred strains of mice, we recently identified several candidate genes driving NAFLD. We investigated the role of one of these, liver pyruvate kinase (L-PK or Pklr), in NAFLD by using patient samples and mouse models. METHODS: We examined L-PK expression in mice of both sexes and in a cohort of bariatric surgery patients. We used liver-specific loss- and gain-of-function strategies in independent animal models of diet-induced steatosis and fibrosis. After treatment, we measured several metabolic phenotypes including obesity, insulin resistance, dyslipidemia, liver steatosis, and fibrosis. Liver tissues were used for gene expression and immunoblotting, and liver mitochondria bioenergetics was characterized. RESULTS: In both mice and humans, L-PK expression is up-regulated in males via testosterone and is strongly associated with NAFLD severity. In a steatosis model, L-PK silencing in male mice improved glucose tolerance, insulin sensitivity, and lactate/pyruvate tolerance compared with controls. Furthermore, these animals had reduced plasma cholesterol levels and intrahepatic triglyceride accumulation. Conversely, L-PK overexpression in male mice resulted in augmented disease phenotypes. In contrast, female mice overexpressing L-PK were unaffected. Mechanistically, L-PK altered mitochondrial pyruvate flux and its incorporation into citrate, and this, in turn, increased liver triglycerides via up-regulated de novo lipogenesis and increased PNPLA3 levels accompanied by mitochondrial dysfunction. Also, L-PK increased plasma cholesterol levels via increased PCSK9 levels. On the other hand, L-PK silencing reduced de novo lipogenesis and PNPLA3 and PCSK9 levels and improved mitochondrial function. Finally, in fibrosis model, we demonstrate that L-PK silencing in male mice reduced both liver steatosis and fibrosis, accompanied by reduced de novo lipogenesis and improved mitochondrial function. CONCLUSIONS: L-PK acts in a male-specific manner in the development of liver steatosis and fibrosis. Because NAFLD/nonalcoholic steatohepatitis exhibit sexual dimorphism, our results have important implications for the development of personalized therapeutics.


Assuntos
Lipogênese/genética , Hepatopatia Gordurosa não Alcoólica/genética , Piruvato Quinase/genética , Adulto , Animais , Modelos Animais de Doenças , Feminino , Mutação com Ganho de Função , Perfilação da Expressão Gênica , Inativação Gênica , Predisposição Genética para Doença , Humanos , Fígado/enzimologia , Fígado/patologia , Mutação com Perda de Função , Masculino , Camundongos , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/patologia , Piruvato Quinase/metabolismo , Fatores Sexuais , Regulação para Cima
16.
J Labelled Comp Radiopharm ; 64(1): 30-39, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33063888

RESUMO

Described here is a method for the measurement of the radio-metabolites of the positron emission tomography radiotracer [6-O-methyl-11 C]diprenorphine ([11 C]diprenorphine) using in-line solid-phase extraction (SPE) combined with radio-high-pressure liquid chromatography analysis. We believe that this method offers a reliable and reproducible approach to [11 C]diprenorphine metabolite analysis. In addition, different SPE stationary phases are assessed for their efficiency for loading, retention and elution of the parent molecule and its metabolites. Having assessed C4, phenyl and C18 stationary phase, we concluded that a C18 SPE was optimal for our method. Finally, in silico predictions of diprenorphine metabolism were compared with in vivo metabolism of [11 C]diprenorphine induced by hepatic microsomal digestion and analysed by matrix-assisted laser desorption/ionisation mass spectrometry. It was found that there was a high degree of agreement between the two methods and in particular the formation of the diprenorphine-3-glucuronide metabolite.


Assuntos
Cromatografia Líquida de Alta Pressão , Diprenorfina , Tomografia por Emissão de Pósitrons , Extração em Fase Sólida
17.
Pain ; 161(12): 2720-2730, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32639369

RESUMO

It is unclear whether a diagnosis of chronic pain is associated with an increase or decrease in the placebo response. The aim of this study was to use an experimental placebo conditioning paradigm to test whether expectancy for pain relief impacts on acute pain perception in individuals with a chronic pain diagnosis of osteoarthritis (OA) or fibromyalgia (FM), compared to healthy individuals (HIs). An inert cream was applied to the dominant forearm of participants (60 OA, 79 FM, and 98 HI), randomly assigned to either a placebo or control group. In both groups, an inactive cream was applied to the dominant forearm. The placebo group was told this may or may not be a local anaesthetic cream, whereas the control group was told the cream was inactive. Laser pain was delivered, and numerical pain intensity ratings collected before, during, and after cream application, along with expectation of pain relief and anxiety. The procedure was repeated 2 weeks later to assess reproducibility. There was a significant reduction in pain in the placebo group, independent of clinical diagnosis. Diagnostic groups (OA, FM, and HI) did not differ in their magnitude of placebo analgesia or expectancy of pain relief. The results were similar in the repeat session. The results demonstrate that individuals with chronic pain respond to experimental placebo analgesia in a similar and reproducible manner as HIs, despite higher levels of psychological comorbidity. This has implications for using placebo analgesia in the treatment of chronic pain.


Assuntos
Analgesia , Dor Crônica , Dor Crônica/tratamento farmacológico , Humanos , Manejo da Dor , Medição da Dor , Efeito Placebo , Reprodutibilidade dos Testes
18.
J Pain ; 21(11-12): 1085-1100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31982685

RESUMO

BACKGROUND: Fibromyalgia is a debilitating condition characterized by chronic widespread pain. It is believed to be caused by dysfunction of the central nervous system (CNS) but current treatments are largely ineffective. Transcranial direct current stimulation (tDCS), a neuromodulation technique that targets the CNS, may offer a new line of treatment. OBJECTIVE: To systematically review the most up-to-date literature and perform a meta-analysis of the effects of tDCS on pain intensity in fibromyalgia. METHODS: The following databases were searched from inception: Medline (Ovid), PsychInfo, CINAHL, Cochrane Library, and Web of Science. Studies were eligible if they were randomized controlled trials, quasi-randomized trials, and nonrandomized. Crossover and parallel-group design studies were included. Risk of bias was assessed for all included studies. Meta-analysis was conducted on studies investigating pain intensity after tDCS in participants with fibromyalgia and analyzed using standardized mean difference and 95% confidence intervals. RESULTS: Fourteen clinical studies were included. Ten were controlled trials and 4 were within-subjects crossover studies. Meta-analysis of data from 8 controlled trials provides tentative evidence of pain reduction when active tDCS is delivered compared to sham. However, substantial statistical heterogeneity and high risk of bias of primary studies prevent more conclusive recommendations being made. CONCLUSIONS: tDCS is a safe intervention with the potential to lower pain intensity in fibromyalgia. However, there is a need for more empirical research of the neural target sites and optimum stimulation parameters to achieve the greatest effects before conducting further clinical studies. PERSPECTIVE: This systematic review and meta-analysis synthesizes current evidence for the clinical effectiveness of tDCS in the treatment of fibromyalgia pain. There is only tentative evidence of pain reduction when active tDCS is compared to sham. High heterogeneity and risk of bias across studies suggest a need for further empirical research.


Assuntos
Dor Crônica/terapia , Fibromialgia/terapia , Manejo da Dor/métodos , Estimulação Transcraniana por Corrente Contínua/métodos , Dor Crônica/diagnóstico , Dor Crônica/epidemiologia , Ensaios Clínicos como Assunto/métodos , Fibromialgia/diagnóstico , Fibromialgia/epidemiologia , Humanos , Resultado do Tratamento
19.
Mol Aspects Med ; 71: 100838, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31954522

RESUMO

Mitochondria are metabolic organelles essential not only for energy transduction, but also a range of other functions such as biosynthesis, ion and metal homeostasis, maintenance of redox balance, and cell signaling. A hallmark example of how mitochondria can rebalance these processes to adjust cell function is observed in macrophages. These innate immune cells are responsible for a remarkable breadth of processes including pathogen elimination, antigen presentation, debris clearance, and wound healing. These diverse, polarized functions often include similarly disparate alterations in the metabolic phenotype associated with their execution. In this chapter, mitochondrial bioenergetics and signaling are viewed through the lens of macrophage polarization: both classical, pro-inflammatory activation and alternative, anti-inflammatory activation are associated with substantive changes to mitochondrial metabolism. Emphasis is placed on recent evidence that aims to clarify the essential - rather than associative - mitochondrial alterations, as well as accumulating data suggesting a degree of plasticity within the metabolic phenotypes that can support pro- and anti-inflammatory functions.


Assuntos
Ativação de Macrófagos , Macrófagos/imunologia , Mitocôndrias/metabolismo , Animais , Metabolismo Energético , Homeostase , Humanos , Imunidade Inata , Oxirredução , Fenótipo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA