RESUMO
Linking clinical multi-omics with mechanistic studies may improve the understanding of rare cancers. We leverage two precision oncology programs to investigate rhabdomyosarcoma with FUS/EWSR1-TFCP2 fusions, an orphan malignancy without effective therapies. All tumors exhibit outlier ALK expression, partly accompanied by intragenic deletions and aberrant splicing resulting in ALK variants that are oncogenic and sensitive to ALK inhibitors. Additionally, recurrent CKDN2A/MTAP co-deletions provide a rationale for PRMT5-targeted therapies. Functional studies show that FUS-TFCP2 blocks myogenic differentiation, induces transcription of ALK and truncated TERT, and inhibits DNA repair. Unlike other fusion-driven sarcomas, TFCP2-rearranged tumors exhibit genomic instability and signs of defective homologous recombination. DNA methylation profiling demonstrates a close relationship with undifferentiated sarcomas. In two patients, sarcoma was preceded by benign lesions carrying FUS-TFCP2, indicating stepwise sarcomagenesis. This study illustrates the potential of linking precision oncology with preclinical research to gain insight into the classification, pathogenesis, and therapeutic vulnerabilities of rare cancers.
Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Humanos , Multiômica , Medicina de Precisão , Fatores de Transcrição/genética , Sarcoma/genética , Sarcoma/terapia , Sarcoma/diagnóstico , Proteína EWS de Ligação a RNA/genética , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/terapia , Receptores Proteína Tirosina Quinases , Biomarcadores Tumorais/genética , Proteínas de Fusão Oncogênica/genética , Proteína-Arginina N-Metiltransferases , Proteínas de Ligação a DNA/genéticaRESUMO
PURPOSE: INFORM is an international pediatric precision oncology registry, prospectively collecting molecular and clinical data of children with recurrent, progressive, or very high-risk malignancies. We have previously identified a subgroup of patients with improved outcomes on the basis of molecular profiling. The present analysis systematically investigates progression-free survival (PFS) and overall survival (OS) of patients receiving matching targeted treatment (MTT) with the most frequently applied drug classes and its correlation with underlying molecular alterations. METHODS: A cohort of 519 patients with relapsed or refractory high-risk malignancies who had completed a follow-up of at least 2 years or shorter in the case of death or loss to follow-up was analyzed. Survival times were compared using the log-rank test. RESULTS: MTT with anaplastic lymphoma kinase (ALK), neurotrophic tyrosine receptor kinase (NTRK), and B-RAF kinase (BRAF) inhibitors showed significantly improved PFS (P = .012) and OS (P = .036) in comparison with conventional treatment or no treatment. However, analysis of the four most commonly applied MTT groups, mitogen-activated protein kinase (MEK- n = 19), cyclin-dependent kinase (CDK- n = 23), other kinase (n = 62), and mammalian-target of rapamycin (mTOR- n = 20) inhibitors, did not reveal differences in PFS or OS compared with conventional treatment or no treatment in patients with similar molecular pathway alterations. We did not observe differences in the type of pathway alterations (eg, copy number alterations, single-nucleotide variants, InDels, gene fusions) addressed by MTT. CONCLUSION: Patients with respective molecular alterations benefit from treatment with ALK, NTRK, and BRAF inhibitors as previously described. No survival benefit was observed with MTT for mutations in the MEK, CDK, other kinase, or mTOR signaling pathways. The noninterventional character of a registry has to be taken into account when interpreting these data and underlines the need for innovative interventional biomarker-driven clinical trials in pediatric oncology.
Assuntos
Antineoplásicos , Carcinoma , Animais , Humanos , Criança , Adolescente , Antineoplásicos/efeitos adversos , Proteínas Proto-Oncogênicas B-raf/genética , Medicina de Precisão , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Receptores Proteína Tirosina Quinases , Serina-Treonina Quinases TOR , Quinases de Proteína Quinase Ativadas por Mitógeno , MamíferosRESUMO
The large diversity of central nervous system (CNS) tumor types in children and adolescents results in disparate patient outcomes and renders accurate diagnosis challenging. In this study, we prospectively integrated DNA methylation profiling and targeted gene panel sequencing with blinded neuropathological reference diagnostics for a population-based cohort of more than 1,200 newly diagnosed pediatric patients with CNS tumors, to assess their utility in routine neuropathology. We show that the multi-omic integration increased diagnostic accuracy in a substantial proportion of patients through annotation to a refining DNA methylation class (50%), detection of diagnostic or therapeutically relevant genetic alterations (47%) or identification of cancer predisposition syndromes (10%). Discrepant results by neuropathological WHO-based and DNA methylation-based classification (30%) were enriched in histological high-grade gliomas, implicating relevance for current clinical patient management in 5% of all patients. Follow-up (median 2.5 years) suggests improved survival for patients with histological high-grade gliomas displaying lower-grade molecular profiles. These results provide preliminary evidence of the utility of integrating multi-omics in neuropathology for pediatric neuro-oncology.
Assuntos
Neoplasias Encefálicas , Glioma , Adolescente , Humanos , Criança , Multiômica , Glioma/diagnóstico , Glioma/genética , Neuropatologia , Metilação de DNA/genética , Mutação , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genéticaRESUMO
Analysis of mutational signatures can reveal underlying molecular mechanisms of the processes that have imprinted the somatic mutations found in cancer genomes. Here, we analyze single base substitutions and small insertions and deletions in pediatric cancers encompassing 785 whole-genome sequenced tumors from 27 molecularly defined cancer subtypes. We identified only a small number of mutational signatures active in pediatric cancers, compared with previously analyzed adult cancers. Further, we report a significant difference in the proportion of pediatric tumors showing homologous recombination repair defect signatures compared with previous analyses. In pediatric leukemias, we identified an indel signature, not previously reported, characterized by long insertions in nonrepeat regions, affecting mainly intronic and intergenic regions, but also exons of known cancer genes. We provide a systematic overview of COSMIC v.3 mutational signatures active across pediatric cancers, which is highly relevant for understanding tumor biology and enabling future research in defining biomarkers of treatment response.
Assuntos
Neoplasias , Adulto , Humanos , Criança , Mutação , Neoplasias/genética , Oncogenes , Mutação INDEL , Reparo do DNARESUMO
The international precision oncology program INFORM enrolls relapsed/refractory pediatric cancer patients for comprehensive molecular analysis. We report a two-year pilot study implementing ex vivo drug sensitivity profiling (DSP) using a library of 75-78 clinically relevant drugs. We included 132 viable tumor samples from 35 pediatric oncology centers in seven countries. DSP was conducted on multicellular fresh tumor tissue spheroid cultures in 384-well plates with an overall mean processing time of three weeks. In 89 cases (67%), sufficient viable tissue was received; 69 (78%) passed internal quality controls. The DSP results matched the identified molecular targets, including BRAF, ALK, MET, and TP53 status. Drug vulnerabilities were identified in 80% of cases lacking actionable (very) high-evidence molecular events, adding value to the molecular data. Striking parallels between clinical courses and the DSP results were observed in selected patients. Overall, DSP in clinical real-time is feasible in international multicenter precision oncology programs.
RESUMO
iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival.
Assuntos
Neoplasias , Adolescente , Criança , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Oncologia , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Medicina de Precisão , Estudos Prospectivos , Sequenciamento do ExomaRESUMO
Long-term complications such as radiation-induced second malignancies occur in a subset of patients following radiation-therapy, particularly relevant in pediatric patients due to the long follow-up period in case of survival. Radiation-induced gliomas (RIGs) have been reported in patients after treatment with cranial irradiation for various primary malignancies such as acute lymphoblastic leukemia (ALL) and medulloblastoma (MB). We perform comprehensive (epi-) genetic and expression profiling of RIGs arising after cranial irradiation for MB (n = 23) and ALL (n = 9). Our study reveals a unifying molecular signature for the majority of RIGs, with recurrent PDGFRA amplification and loss of CDKN2A/B and an absence of somatic hotspot mutations in genes encoding histone 3 variants or IDH1/2, uncovering diagnostic markers and potentially actionable targets.
Assuntos
Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Amplificação de Genes , Glioma/genética , Recidiva Local de Neoplasia/patologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Adolescente , Adulto , Criança , Deleção Cromossômica , Análise por Conglomerados , Metilação de DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Rearranjo Gênico/genética , Genoma Humano , Glioma/patologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Radiação , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transcrição Gênica , Adulto JovemRESUMO
INFORM is a prospective, multinational registry gathering clinical and molecular data of relapsed, progressive, or high-risk pediatric patients with cancer. This report describes long-term follow-up of 519 patients in whom molecular alterations were evaluated according to a predefined seven-scale target prioritization algorithm. Mean turnaround time from sample receipt to report was 25.4 days. The highest target priority level was observed in 42 patients (8.1%). Of these, 20 patients received matched targeted treatment with a median progression-free survival of 204 days [95% confidence interval (CI), 99-not applicable], compared with 117 days (95% CI, 106-143; P = 0.011) in all other patients. The respective molecular targets were shown to be predictive for matched treatment response and not prognostic surrogates for improved outcome. Hereditary cancer predisposition syndromes were identified in 7.5% of patients, half of which were newly identified through the study. Integrated molecular analyses resulted in a change or refinement of diagnoses in 8.2% of cases. SIGNIFICANCE: The pediatric precision oncology INFORM registry prospectively tested a target prioritization algorithm in a real-world, multinational setting and identified subgroups of patients benefiting from matched targeted treatment with improved progression-free survival, refinement of diagnosis, and identification of hereditary cancer predisposition syndromes.See related commentary by Eggermont et al., p. 2677.This article is highlighted in the In This Issue feature, p. 2659.
Assuntos
Neoplasias , Criança , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Medicina de Precisão , Intervalo Livre de Progressão , Estudos Prospectivos , Sistema de RegistrosRESUMO
BACKGROUND: Pediatric patients with relapsed or refractory disease represent a population with a desperate medical need. The aim of the INFORM (INdividualized Therapy FOr Relapsed Malignancies in Childhood) program is to translate next generation molecular diagnostics into a biomarker driven treatment strategy. The program consists of two major foundations: the INFORM registry providing a molecular screening platform and the INFORM2 series of biomarker driven phase I/II trials. The INFORM2 NivEnt trial aims to determine the recommended phase 2 dose (RP2D) of the combination treatment of nivolumab and entinostat (phase I) and to evaluate activity and safety (phase II). METHODS: This is an exploratory non-randomized, open-label, multinational and multicenter seamless phase I/II trial in children and adolescents with relapsed / refractory or progressive high-risk solid tumors and CNS tumors. The phase I is divided in 2 age cohorts: 12-21 years and 6-11 years and follows a 3 + 3 design with two dose levels for entinostat (2 mg/m2 and 4 mg/m2 once per week) and fixed dose nivolumab (3 mg/kg every 2 weeks). Patients entering the trial on RP2D can seamlessly enter phase II which consists of a biomarker defined four group basket trial: high mutational load (group A), high PD-L1 mRNA expression (group B), focal MYC(N) amplification (group C), low mutational load and low PD-L1 mRNA expression and no MYC(N) amplification (group D). A Bayesian adaptive design will be used to early stop cohorts that fail to show evidence of activity. The maximum number of patients is 128. DISCUSSION: This trial intends to exploit the immune enhancing effects of entinostat on nivolumab using an innovative biomarker driven approach in order to maximize the chance of detecting signs of activity. It prevents exposure to unnecessary risks by applying the Bayesian adaptive design for early stopping for futility. The adaptive biomarker driven design provides an innovative approach accelerating drug development and reducing exposure to investigational treatments in these vulnerable children at the same time. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03838042. Registered on 12 February 2019.