Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pediatr ; 273: 114148, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880379

RESUMO

OBJECTIVE: To evaluate the association between deficiency of vitamin A or D at diagnosis of pediatric acute lymphoblastic leukemia (ALL) and subsequent infectious complications during induction therapy. STUDY DESIGN: We conducted an institutional review board-approved, retrospective cohort study of children with newly diagnosed ALL from 2007 to 2017 at St. Jude Children's Research Hospital. We measured vitamin D, vitamin D binding protein, retinol binding protein as a surrogate for vitamin A, and immunoglobulin isotypes in serum obtained at ALL diagnosis, and we assessed the association between vitamin deficiencies or levels and infection-related complications during the 6-week induction phase using Cox regression models. RESULTS: Among 378 evaluable participants, vitamin A and D deficiencies were common (43% and 17%, respectively). Vitamin D deficiency was associated with higher risks of febrile neutropenia (adjusted hazard ratio [aHR], 1.7; P = .0072), clinically documented infection (aHR, 1.73; P = .025), and likely bacterial infection (aHR, 1.86; P = .008). Conversely, vitamin A deficiency was associated solely with a lower risk of sepsis (aHR, 0.19; P = .027). CONCLUSIONS: In this retrospective study, vitamin D deficiency was associated with an increased risk of common infection-related complications during induction therapy for ALL. Additional studies are warranted to evaluate whether vitamin D supplementation could mitigate this effect.

2.
Viruses ; 15(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36851695

RESUMO

Females often exhibit superior immune responses compared to males toward vaccines and pathogens such as influenza viruses and SARS-CoV-2. To help explain these differences, we first studied serum immunoglobulin isotype patterns in C57BL/6 male and female mice. We focused on IgG2b, an isotype that lends to virus control and that has been previously shown to be elevated in murine females compared to males. Improvements in IgG2b serum levels, and/or IgG2b ratios with other non-IgM isotypes, were observed when: (i) wildtype (WT) female mice were compared to estrogen receptor knockout mice (IgG2b, IgG2b/IgG3, IgG2b/IgG1, and IgG2b/IgA were all higher in WT mice), (ii) unmanipulated female mice were compared to ovariectomized mice (IgG2b/IgA was higher in unmanipulated animals), (iii) female mice were supplemented with estrogen in the context of an inflammatory insult (IgG2b and IgG2b/IgG3 were improved by estrogen supplementation), and (iv) male mice were supplemented with testosterone, a hormone that can convert to estrogen in vivo (IgG2b, IgG2b/IgG3, IgG2b/IgG1, and IgG2b/IgA were all improved by supplementation). We next examined data from three sets of previously described male and female human blood samples. In each case, there were higher IgG2 levels, and/or ratios of IgG2 with non-IgM isotypes, in human females compared to males. The effects of sex and sex hormones in the mouse and human studies were subtle, but frequent, suggesting that sex hormones represent only a fraction of the factors that influence isotype patterns. Examination of the gene loci suggested that upregulation of murine IgG2b or human IgG2 could be mediated by estrogen receptor binding to estrogen response elements and cytosine-adenine (CA) repeats upstream of respective Cγ genes. Given that murine IgG2b and human IgG2 lend to virus control, the isotype biases in females may be sufficient to improve outcomes following vaccination or infection. Future attention to sex hormone levels, and consequent immunoglobulin isotype patterns, in clinical trials are encouraged to support the optimization of vaccine and drug products for male and female hosts.


Assuntos
COVID-19 , Testosterona , Humanos , Feminino , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Estrogênio , Caracteres Sexuais , SARS-CoV-2 , Imunoglobulina G , Estrogênios , Camundongos Knockout , Imunoglobulina A
3.
Hum Vaccin Immunother ; 17(2): 554-559, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32750273

RESUMO

SeVRSV is a replication-competent Sendai virus (SeV)-based vaccine carrying the respiratory syncytial virus (RSV) fusion protein (F) gene. Unmanipulated, non-recombinant SeV is a murine parainfluenza virus type 1 (PIV-1) and serves as a Jennerian vaccine for human PIV-1 (hPIV-1). SeV protects African green monkeys (AGM) from infection after hPIV-1 challenge. The recombinant SeVRSV additionally targets RSV and protects AGM from lower respiratory infections after RSV challenge. The present study is the first to report on the safety, viral genome detection, and immunogenicity following SeVRSV vaccination of healthy adults. Seventeen and four healthy adults received intranasal SeVRSV and PBS, respectively, followed by six months of safety monitoring. Virus genome (in nasal wash) and vaccine-specific antibodies (in sera) were monitored for two and four weeks, respectively, post-vaccination. The vaccine was well-tolerated with only mild to moderate reactions that were also present in the placebo group. No severe reactions occurred. As expected, due to preexisting immunity toward hPIV-1 and RSV in adults, vaccine genome detection was transient. There were minimal antibody responses to SeV and negligible responses to RSV F. Results encourage further studies of SeVRSV with progression toward a clinical trial in seronegative children. Abbreviations: AE-adverse event; SAE-serious adverse event; SeV-Sendai virus; RSV-respiratory syncytial virus; PIV-1-parainfluenza virus-type 1; hPIV-1-human parainfluenza virus-type 1; F-RSV fusion protein; SeVRSV-recombinant SeV carrying the RSV F gene; Ab-antibody; MSW-medically significant wheezing; NOCMC-new onset chronic medical condition, mITT-modified Intent to Treat; ALRI-acute lower respiratory tract infection.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Adulto , Animais , Anticorpos Antivirais , Chlorocebus aethiops , Humanos , Imunogenicidade da Vacina , Vírus da Parainfluenza 1 Humana/genética , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vacinas contra Vírus Sincicial Respiratório/genética , Vírus Sincicial Respiratório Humano/genética , Vírus Sendai/genética , Proteínas Virais de Fusão/genética
4.
Int J Mol Sci ; 21(15)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759702

RESUMO

Vitamin A is an important regulator of immune protection, but it is often overlooked in studies of infectious disease. Vitamin A binds an array of nuclear receptors (e.g., retinoic acid receptor, peroxisome proliferator-activated receptor, retinoid X receptor) and influences the barrier and immune cells responsible for pathogen control. Children and adults in developed and developing countries are often vitamin A-deficient or insufficient, characteristics associated with poor health outcomes. To gain a better understanding of the protective mechanisms influenced by vitamin A, we examined immune factors and epithelial barriers in vitamin A deficient (VAD) mice, vitamin D deficient (VDD) mice, double deficient (VAD+VDD) mice, and mice on a vitamin-replete diet (controls). Some mice received insults, including intraperitoneal injections with complete and incomplete Freund's adjuvant (emulsified with PBS alone or with DNA + Fus-1 peptide) or intranasal inoculations with Sendai virus (SeV). Both before and after insults, the VAD and VAD+VDD mice exhibited abnormal serum immunoglobulin isotypes (e.g., elevated IgG2b levels, particularly in males) and cytokine/chemokine patterns (e.g., elevated eotaxin). Even without insult, when the VAD and VAD+VDD mice reached 3-6 months of age, they frequently exhibited opportunistic ascending bacterial urinary tract infections. There were high frequencies of nephropathy (squamous cell hyperplasia of the renal urothelium, renal scarring, and ascending pyelonephritis) and death in the VAD and VAD+VDD mice. When younger VAD mice were infected with SeV, the predominant lesion was squamous cell metaplasia of respiratory epithelium in lungs and bronchioles. Results highlight a critical role for vitamin A in the maintenance of healthy immune responses, epithelial cell integrity, and pathogen control.


Assuntos
Deficiência de Vitamina A/genética , Vitamina A/genética , Deficiência de Vitamina D/genética , Vitamina D/genética , Animais , Doenças Transmissíveis/genética , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/metabolismo , Morte , Modelos Animais de Doenças , Humanos , Imunoglobulinas/genética , Imunoglobulinas/imunologia , Camundongos , Camundongos Knockout , Neoplasias de Células Escamosas/genética , Neoplasias de Células Escamosas/imunologia , Neoplasias de Células Escamosas/metabolismo , Proteínas Supressoras de Tumor/genética , Vitamina A/metabolismo , Deficiência de Vitamina A/imunologia , Deficiência de Vitamina A/metabolismo , Vitamina D/metabolismo , Deficiência de Vitamina D/imunologia , Deficiência de Vitamina D/metabolismo
5.
Int J Mol Sci ; 21(14)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679815

RESUMO

Questions concerning the influences of nuclear receptors and their ligands on mammalian B cells are vast in number. Here, we briefly review the effects of nuclear receptor ligands, including estrogen and vitamins, on immunoglobulin production and protection from infectious diseases. We describe nuclear receptor interactions with the B cell genome and the potential mechanisms of gene regulation. Attention to the nuclear receptor/ligand regulation of B cell function may help optimize B cell responses, improve pathogen clearance, and prevent damaging responses toward inert- and self-antigens.


Assuntos
Linfócitos B/imunologia , Receptores de Esteroides/imunologia , Animais , Linfócitos B/metabolismo , Regulação da Expressão Gênica , Humanos , Imunidade , Imunoglobulinas/genética , Imunoglobulinas/imunologia , Receptores de Esteroides/genética , Hormônios Tireóideos/genética , Hormônios Tireóideos/imunologia , Vitamina A/genética , Vitamina A/imunologia , Vitamina D/genética , Vitamina D/imunologia
6.
Viral Immunol ; 33(4): 307-315, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32105583

RESUMO

Males and females respond to pathogens differently and exhibit significantly different frequencies of autoimmune disease. For example, vaccinated adult females control influenza virus better than males, but females suffer systemic lupus erythematosus at a 9:1 frequency compared to males. Numerous explanations have been offered for these sex differences, but most have involved indirect mechanisms by which estrogen, a nuclear hormone, modifies cell barriers or immunity. In search of a direct mechanism, we examined the binding of estrogen receptor α (ERα), a class I nuclear hormone receptor, to the immunoglobulin heavy chain locus. Here, we show that in purified murine B cells, ERα and RNA polymerase II (RNA Pol II) exhibit extraordinarily similar DNA binding patterns. We further demonstrate that ERα preferentially binds adenosine-cytidine (AC)-repeats in the immunoglobulin heavy chain locus when supplemental estrogen is added to purified, lipopolysaccharide-activated B cells. Based on these and previous data, we hypothesize that (i) estrogen guides the binding of ERα and its RNA Pol II partner within the locus, which in turn instructs sterile transcription and class switch recombination (CSR), (ii) ERα binding to AC-repeats modifies the DNA architecture and loops associated with CSR, and (iii) by these mechanisms, estrogen instructs antibody expression. By targeting ERα-DNA interactions in the immunoglobulin heavy chain locus, clinicians may ultimately enhance antibody responses in the context of infectious diseases and reduce antibody responses in the context of allergic or autoimmune reactions.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Cadeias Pesadas de Imunoglobulinas/genética , Lúpus Eritematoso Sistêmico/imunologia , Infecções por Orthomyxoviridae/imunologia , RNA Polimerase II/metabolismo , Animais , Formação de Anticorpos/imunologia , Linfócitos B/imunologia , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Switching de Imunoglobulina , Lúpus Eritematoso Sistêmico/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/genética , RNA Polimerase II/genética , Caracteres Sexuais , Fatores Sexuais
7.
Cell Immunol ; 346: 103996, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31703914

RESUMO

Sex hormones are best known for their influences on reproduction, but they also have profound influences on the immune response. Examples of sex-specific differences include: (i) the relatively poor control of influenza virus infections in males compared to females, (ii) allergic asthma, an IgE-associated hypersensitivity reaction that is exacerbated in adolescent females compared to males, and (iii) systemic lupus erythematosus, a life-threatening autoimmune disease with a 9:1 female:male bias. Here we consider how estrogen and estrogen receptor α (ERα) may influence the immune response by modifying class switch recombination (CSR) and immunoglobulin expression patterns. We focus on ERα binding to enhancers (Eµ and the 3' regulatory region) and switch sites (Sµ and Sε) in the immunoglobulin heavy chain locus. Our preliminary data from ChIP-seq analyses of purified, activated B cells show estrogen-mediated changes in the positioning of ERα binding within and near Sµ and Sε. In the presence of estrogen, ERα is bound not only to estrogen response elements (ERE), but also to adenosine-cytidine (AC)-repeats and poly adenosine (poly A) sequences, in some cases within constant region gene introns. We propose that by binding these sites, estrogen and ERα directly participate in the DNA loop formation required for CSR. We further suggest that estrogen regulates immunoglobulin expression patterns and can thereby influence life-and-death outcomes of infection, hypersensitivity, and autoimmune disease.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Switching de Imunoglobulina/imunologia , Doenças Autoimunes/imunologia , Feminino , Humanos , Hipersensibilidade/genética , Hipersensibilidade/imunologia , Masculino , Poli A/genética , Elementos de Resposta/genética
8.
Vaccines (Basel) ; 7(1)2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30818795

RESUMO

Despite extraordinary advances in fields of immunology and infectious diseases, vaccine development remains a challenge. The development of a respiratory syncytial virus vaccine, for example, has spanned more than 50 years of research with studies of more than 100 vaccine candidates. Dozens of attractive vaccine products have entered clinical trials, but none have completed the path to licensing. Human immunodeficiency virus vaccine development has proven equally difficult, as there is no licensed product after more than 30 years of pre-clinical and clinical research. Here, we examine vaccine development with attention to the host. We discuss how nuclear hormones, including vitamins and sex hormones, can influence responses to vaccines. We show how nuclear hormones interact with regulatory elements of immunoglobulin gene loci and how the deletion of estrogen response elements from gene enhancers will alter patterns of antibody isotype expression. Based on these findings, and findings that nuclear hormone levels are often insufficient or deficient among individuals in both developed and developing countries, we suggest that failed vaccine studies may in some cases reflect weaknesses of the host rather than the product. We encourage analyses of nuclear hormone levels and immunocompetence among study participants in clinical trials to ensure the success of future vaccine programs.

9.
Int Immunol ; 31(3): 141-156, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30407507

RESUMO

Nuclear hormone receptors including the estrogen receptor (ERα) and the retinoic acid receptor regulate a plethora of biological functions including reproduction, circulation and immunity. To understand how estrogen and other nuclear hormones influence antibody production, we characterized total serum antibody isotypes in female and male mice of C57BL/6J, BALB/cJ and C3H/HeJ mouse strains. Antibody levels were higher in females compared to males in all strains and there was a female preference for IgG2b production. Sex-biased patterns were influenced by vitamin levels, and by antigen specificity toward influenza virus or pneumococcus antigens. To help explain sex biases, we examined the direct effects of estrogen on immunoglobulin heavy chain sterile transcript production among purified, lipopolysaccharide-stimulated B cells. Supplemental estrogen in B-cell cultures significantly increased immunoglobulin heavy chain sterile transcripts. Chromatin immunoprecipitation analyses of activated B cells identified significant ERα binding to estrogen response elements (EREs) centered within enhancer elements of the immunoglobulin heavy chain locus, including the Eµ enhancer and hypersensitive site 1,2 (HS1,2) in the 3' regulatory region. The ERE in HS1,2 was conserved across animal species, and in humans marked a site of polymorphism associated with the estrogen-augmented autoimmune disease, lupus. Taken together, the results highlight: (i) the important targets of ERα in regulatory regions of the immunoglobulin heavy chain locus that influence antibody production, and (ii) the complexity of mechanisms by which estrogen instructs sex-biased antibody production profiles.


Assuntos
Formação de Anticorpos/genética , Elementos Facilitadores Genéticos , Cadeias Pesadas de Imunoglobulinas/genética , Receptores de Estrogênio/metabolismo , Elementos de Resposta/genética , Caracteres Sexuais , Animais , Formação de Anticorpos/imunologia , Sítios de Ligação , Cadeias Pesadas de Imunoglobulinas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Elementos de Resposta/imunologia
10.
Viral Immunol ; 30(9): 628-632, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29028182

RESUMO

Viral sequence integration into the mammalian genome has long been perceived as a health risk. In some cases, integration translates to chronic viral infection, and in other instances, oncogenic gene mutations occur. However, research also shows that animal cells can benefit from integrated viral sequences (e.g., to support host cell development or to silence foreign invaders). Here we propose that, comparable with the clustered regularly interspaced short palindromic repeats that provide bacteria with adaptive immunity against invasive bacteriophages, animal cells may co-opt integrated viral sequences to support immune memory. We hypothesize that host cells express viral peptides from open reading frames in integrated sequences to boost adaptive B cell and T cell responses long after replicating viruses are cleared. In support of this hypothesis, we examine previous literature describing (1) viruses that infect acutely (e.g., vaccinia viruses and orthomyxoviruses) followed by unexplained, long-term persistence of viral nucleotide sequences, viral peptides, and virus-specific adaptive immunity, (2) the high frequency of endogenous viral genetic elements found in animal genomes, and (3) mechanisms with which animal host machinery supports foreign sequence integration.


Assuntos
Imunidade Adaptativa/imunologia , DNA Viral/genética , Orthomyxoviridae/genética , Orthomyxoviridae/imunologia , RNA Viral/genética , Vaccinia virus/genética , Vaccinia virus/imunologia , Integração Viral/genética , Imunidade Adaptativa/genética , Animais , Linfócitos B/imunologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma/genética , Humanos , Fases de Leitura Aberta/genética , Orthomyxoviridae/patogenicidade , Linfócitos T/imunologia , Vaccinia virus/patogenicidade
11.
Virology ; 509: 60-66, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28605636

RESUMO

Human metapneumovirus (hMPV) infections pose a serious health risk to young children, particularly in cases of premature birth. No licensed vaccine exists and there is no standard treatment for hMPV infections apart from supportive hospital care. We describe the production of a Sendai virus (SeV) recombinant that carries a gene for a truncated hMPV fusion (F) protein (SeV-MPV-Ft). The vaccine induces binding and neutralizing antibody responses toward hMPV and protection against challenge with hMPV in a cotton rat system. Results encourage advanced development of SeV-MPV-Ft to prevent the morbidity and mortality caused by hMPV infections in young children.


Assuntos
Antígenos Virais/imunologia , Portadores de Fármacos , Metapneumovirus/imunologia , Infecções por Paramyxoviridae/prevenção & controle , Vírus Sendai/genética , Proteínas Virais de Fusão/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/genética , Modelos Animais de Doenças , Metapneumovirus/genética , Infecções por Paramyxoviridae/imunologia , Sigmodontinae , Resultado do Tratamento , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas Virais de Fusão/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
12.
Cytokine ; 91: 1-5, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27940088

RESUMO

Vitamin A is an essential nutrient for the protection of children from respiratory tract disease. Supplementation with vitamin A is frequently prescribed in the clinical setting, in part to combat deficiencies among children in developing countries, and in part to treat respiratory infections in clinical trials. This vitamin influences immune responses via multiple, and sometimes seemingly contradictory mechanisms. For example, in separate reports, vitamin A was shown to decrease Th17 T-cell activity by downregulating IL-6, and to promote B cell production of IgA by upregulating IL-6. To explain these apparent contradictions, we evaluated the effects of retinoic acid (RA), a key metabolite of vitamin A, on cell lines of respiratory tract epithelial cells (LETs) and macrophages (MACs). When triggered with LPS or Sendai virus, a mouse respiratory pathogen, these two cell lines experienced opposing influences of RA on IL-6. Both IL-6 protein production and transcript levels were downregulated by RA in LETs, but upregulated in MACs. RA also increased transcript levels of MCP-1, GMCSF, and IL-10 in MACs, but not in LETs. Conversely, when LETs, but not MACs, were exposed to RA, there was an increase in transcripts for RARß, an RA receptor with known inhibitory effects on cell metabolism. Results help explain past discrepancies in the literature by demonstrating that the effects of RA are cell target dependent, and suggest close attention be paid to cell-specific effects in clinical trials involving vitamin A supplements.


Assuntos
Citocinas/biossíntese , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/metabolismo , Mucosa Respiratória/metabolismo , Vitamina A/farmacologia , Animais , Linhagem Celular Transformada , Células Epiteliais/citologia , Macrófagos/citologia , Camundongos , Mucosa Respiratória/citologia
13.
PLoS Pathog ; 12(8): e1005804, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27505057

RESUMO

The healthy lung maintains a steady state of immune readiness to rapidly respond to injury from invaders. Integrins are important for setting the parameters of this resting state, particularly the epithelial-restricted αVß6 integrin, which is upregulated during injury. Once expressed, αVß6 moderates acute lung injury (ALI) through as yet undefined molecular mechanisms. We show that the upregulation of ß6 during influenza infection is involved in disease pathogenesis. ß6-deficient mice (ß6 KO) have increased survival during influenza infection likely due to the limited viral spread into the alveolar spaces leading to reduced ALI. Although the ß6 KO have morphologically normal lungs, they harbor constitutively activated lung CD11b+ alveolar macrophages (AM) and elevated type I IFN signaling activity, which we traced to the loss of ß6-activated transforming growth factor-ß (TGF-ß). Administration of exogenous TGF-ß to ß6 KO mice leads to reduced numbers of CD11b+ AMs, decreased type I IFN signaling activity and loss of the protective phenotype during influenza infection. Protection extended to other respiratory pathogens such as Sendai virus and bacterial pneumonia. Our studies demonstrate that the loss of one epithelial protein, αVß6 integrin, can alter the lung microenvironment during both homeostasis and respiratory infection leading to reduced lung injury and improved survival.


Assuntos
Antígenos de Neoplasias/imunologia , Integrinas/imunologia , Interferon Tipo I/biossíntese , Interferon Tipo I/imunologia , Pulmão/imunologia , Infecções Respiratórias/imunologia , Transferência Adotiva , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Imunofluorescência , Immunoblotting , Pulmão/microbiologia , Macrófagos Alveolares/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real
14.
Mol Immunol ; 77: 97-102, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27494228

RESUMO

Females and males differ in antibody isotype expression patterns and in immune responses to foreign- and self-antigens. For example, systemic lupus erythematosus is a condition that associates with the production of isotype-skewed anti-self antibodies, and exhibits a 9:1 female:male disease ratio. To explain differences between B cell responses in males and females, we sought to identify direct interactions of the estrogen receptor (ER) with the immunoglobulin heavy chain locus. This effort was encouraged by our previous identification of estrogen response elements (ERE) in heavy chain switch (S) regions. We conducted a full-genome chromatin immunoprecipitation analysis (ChIP-seq) using DNA from LPS-activated B cells and an ERα-specific antibody. Results revealed ER binding to a wide region of DNA, spanning sequences from the JH cluster to Cδ, with peaks in Eµ and Sµ sites. Additional peaks of ERα binding were coincident with hs1,2 and hs4 sites in the 3' regulatory region (3'RR) of the heavy chain locus. This first demonstration of direct binding of ER to key regulatory elements in the immunoglobulin locus supports our hypothesis that estrogen and other nuclear hormone receptors and ligands may directly influence antibody expression and class switch recombination (CSR). Our hypothesis encourages the conduct of new experiments to evaluate the consequences of ER binding. A better understanding of ER:DNA interactions in the immunoglobulin heavy chain locus, and respective mechanisms, may ultimately translate to better control of antibody expression, better protection against pathogens, and prevention of pathologies caused by auto-immune disease.


Assuntos
Linfócitos B/imunologia , Regulação da Expressão Gênica/imunologia , Cadeias Pesadas de Imunoglobulinas/imunologia , Região de Troca de Imunoglobulinas/imunologia , Receptores de Estrogênio/imunologia , Elementos de Resposta/imunologia , Animais , Formação de Anticorpos/genética , Formação de Anticorpos/imunologia , Imunoprecipitação da Cromatina , Feminino , Humanos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Receptores de Estrogênio/metabolismo
15.
Int Immunol ; 28(3): 139-52, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26507129

RESUMO

The World Health Organization (WHO) estimates that 250 million children under the age of five suffer from vitamin A deficiencies (VAD). Individuals with VAD experience higher rates of mortality and increased morbidity during enteric and respiratory infections compared with those who are vitamin A sufficient. Previously, our laboratory has demonstrated that VAD mice have significantly impaired virus-specific IgA and CD8(+) T-cell responses in the airways. Here, we demonstrate that VAD mice experience enhanced cytokine/chemokine gene expression and release in the respiratory tract 10 days following virus infection compared with control vitamin A sufficient animals. Cytokines/chemokines that are reproducibly up-regulated at the gene expression and protein levels include IFNγ and IL-6. Despite previous indications that cytokine dysregulation in VAD animals might reflect low forkhead box P3 (FoxP3)-positive regulatory T-cell frequencies, we found no reduction in FoxP3(+) T cells in VAD respiratory tissues. As an alternative explanation for the high cytokine levels, we found that the extent of virus infection and the persistence of viral antigens were increased on day 10 post-infection in VAD animals compared with controls, and consequently that respiratory tract tissues had an increased potential to activate virus-specific T cells. Results encourage cautious management of viral infections in patients with VAD, as efforts to enhance FoxP3(+) T cell frequencies and quell immune effectors could potentially exacerbate disease if the virus has not been cleared.


Assuntos
Antígenos Virais/metabolismo , Nariz/imunologia , Infecções por Respirovirus/imunologia , Vírus Sendai/fisiologia , Carga Viral , Deficiência de Vitamina A/imunologia , Vitamina A/administração & dosagem , Animais , Antígenos Virais/imunologia , Dietoterapia , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nariz/virologia , Gravidez , Infecções por Respirovirus/complicações , Infecções por Respirovirus/virologia , Linfócitos T Reguladores/imunologia , Regulação para Cima , Vitamina A/sangue , Deficiência de Vitamina A/complicações , Deficiência de Vitamina A/virologia
16.
Int Immunol ; 27(5): 229-36, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25477211

RESUMO

The respiratory syncytial virus (RSV) is responsible for as many as 199000 annual deaths worldwide. Currently, there is no standard treatment for RSV disease and no vaccine. Sendai virus (SeV) is an attractive pediatric vaccine candidate because it elicits robust and long-lasting virus-specific B cell and T cell activities in systemic and mucosal tissues. The virus serves as a gene delivery system as well as a Jennerian vaccine against its close cousin, human parainfluenza virus type 1. Here we describe the testing of a recombinant SeV (SeVRSV-Fs) that expresses an unconstrained, secreted RSV-F protein as a vaccine against RSV in cotton rats. After a single intranasal immunization of cotton rats with SeVRSV-Fs, RSV-specific binding and neutralizing antibodies were generated. These antibodies exhibited cross-reactivity with both RSV A and B isolates. RSV-F-specific IFN-γ-producing T cells were also activated. The SeVRSV-Fs vaccine conferred protection against RSV challenge without enhanced immunopathology. In total, results showed that an SeV recombinant that expresses RSV F in an unconstrained, soluble form can induce humoral and cellular immunity that protects against infection with RSV.


Assuntos
Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus Sinciciais Respiratórios/metabolismo , Vírus Sendai/imunologia , Linfócitos T/imunologia , Vacinas Virais/administração & dosagem , Administração Intranasal , Animais , Anticorpos Antivirais/metabolismo , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Humanos , Imunização , Interferon gama/metabolismo , Ativação Linfocitária , Ratos , Proteínas Recombinantes de Fusão/genética , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/genética , Vírus Sendai/genética , Sigmodontinae , Linfócitos T/virologia , Proteínas Virais de Fusão/genética , Vacinas Virais/genética
17.
PLoS One ; 9(11): e113100, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25415360

RESUMO

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in children and is responsible for as many as 199,000 childhood deaths annually worldwide. To support the development of viral therapeutics and vaccines for RSV, a human adult experimental infection model has been established. In this report, we describe the provenance and sequence of RSV Memphis-37, the low-passage clinical isolate used for the model's reproducible, safe, experimental infections of healthy, adult volunteers. The predicted amino acid sequences for major proteins of Memphis-37 are compared to nine other RSV A and B amino acid sequences to examine sites of vaccine, therapeutic, and pathophysiologic interest. Human T- cell epitope sequences previously defined by in vitro studies were observed to be closely matched between Memphis-37 and the laboratory strain RSV A2. Memphis-37 sequences provide baseline data with which to assess: (i) virus heterogeneity that may be evident following virus infection/transmission, (ii) the efficacy of candidate RSV vaccines and therapeutics in the experimental infection model, and (iii) the potential emergence of escape mutants as a consequence of experimental drug treatments. Memphis-37 is a valuable tool for pre-clinical research, and to expedite the clinical development of vaccines, therapeutic immunomodulatory agents, and other antiviral drug strategies for the protection of vulnerable populations against RSV disease.


Assuntos
Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/imunologia , Sequência de Aminoácidos , Animais , Antivirais/imunologia , Antivirais/uso terapêutico , Bronquiolite/imunologia , Bronquiolite/virologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Pré-Escolar , Chlorocebus aethiops , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Células Hep G2 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Masculino , Dados de Sequência Molecular , Infecções por Vírus Respiratório Sincicial/virologia , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vacinas contra Vírus Sincicial Respiratório/uso terapêutico , Vírus Sincicial Respiratório Humano/fisiologia , Homologia de Sequência de Aminoácidos , Tennessee , Resultado do Tratamento , Células Vero , Proteínas Virais/genética , Proteínas Virais/imunologia
18.
J Gen Virol ; 95(Pt 2): 350-362, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24243730

RESUMO

Type I alveolar epithelial cells are a replicative niche for influenza in vivo, yet their response to infection is not fully understood. To better characterize their cellular responses, we have created an immortalized murine lung epithelial type I cell line (LET1). These cells support spreading influenza virus infection in the absence of exogenous protease and thus permit simultaneous analysis of viral replication dynamics and host cell responses. LET1 cells can be productively infected with human, swine and mouse-adapted strains of influenza virus and exhibit expression of an antiviral transcriptional programme and robust cytokine secretion. We characterized influenza virus replication dynamics and host responses of lung type I epithelial cells and identified the capacity of epithelial cell-derived type I IFN to regulate specific modules of antiviral effectors to establish an effective antiviral state. Together, our results indicate that the type I epithelial cell can play a major role in restricting influenza virus infection without contribution from the haematopoietic compartment.


Assuntos
Células Epiteliais/imunologia , Células Epiteliais/virologia , Imunidade Inata , Vírus da Influenza A/imunologia , Vírus da Influenza A/fisiologia , Replicação Viral , Animais , Linhagem Celular , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
19.
Clin Vaccine Immunol ; 19(5): 757-65, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22398245

RESUMO

Vitamin A deficiency (VAD) has profound effects on immune responses in the gut, but its effect on other mucosal responses is less well understood. Sendai virus (SeV) is a candidate human parainfluenza virus type 1 (hPIV-1) vaccine and a candidate vaccine vector for other respiratory viruses. A single intranasal dose of SeV elicits a protective immune response against hPIV-1 within days after vaccination. To define the effect of VAD on acute responses toward SeV, we monitored both antibodies and CD8(+) T cells in mice. On day 10 following SeV infection, there was a trend toward lower antibody activities in the nasal washes of VAD mice than in those of controls, while bronchoalveolar lavage (BAL) fluid and serum antibodies were not reduced. In contrast, there was a dramatic reduction of immunodominant CD8(+) T cell frequencies in the lower respiratory tract (LRT) airways of VAD animals. These T cells also showed unusually high CD103 (the αE subunit of αEß7) expression patterns. In both VAD and control mice, E-cadherin (the ligand for αEß7) was better expressed among epithelial cells lining the upper respiratory tract (URT) than in LRT airways. The results support a working hypothesis that the high CD103 expression among T cell populations in VAD mice alters mechanisms of T cell cross talk with URT and LRT epithelial cells, thereby inhibiting T cell migration and egress into the lower airway. Our data emphasize that the consequences of VAD are not limited to gut-resident cells and characterize VAD influences on an immune response to a respiratory virus vaccine.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/análise , Sistema Respiratório/imunologia , Deficiência de Vitamina A/imunologia , Animais , Anticorpos Antivirais/análise , Sangue/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Linfócitos T CD8-Positivos/química , Endoglina , Células Epiteliais/imunologia , Feminino , Imunofenotipagem , Camundongos , Camundongos Endogâmicos C57BL , Mucosa Nasal/química , Mucosa Nasal/imunologia , Gravidez , Vírus Sendai/imunologia
20.
Vaccine ; 30(5): 959-68, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22119594

RESUMO

Respiratory syncytial virus (RSV) is a serious disease of children, responsible for an estimated 160,000 deaths per year worldwide. Despite the ongoing need for global prevention of RSV and decades of research, there remains no licensed vaccine. Sendai virus (SeV) is a mouse parainfluenza virus-type 1 which has been previously shown to confer protection against its human cousin, human parainfluenza virus-type 1 in African green monkeys (AGM). Here is described the study of a RSV vaccine (SeVRSV), produced by reverse genetics technology using SeV as a backbone to carry the full-length gene for RSV F. To test for immunogenicity, efficacy and safety, the vaccine was administered to AGM by intratracheal (i.t.) and intranasal (i.n.) routes. Control animals received the empty SeV vector or PBS. There were no booster immunizations. SeV and SeVRSV were cleared from the URT and LRT of vaccinated animals by day 10. Antibodies with specificities toward SeV and RSV were detected in SeVRSV primed animals as early as day ten after immunizations in both sera and nasal wash samples. One month after immunization all test and control AGM received an i.n. challenge with RSV-A2. SeVRSV-vaccinated animals exhibited reduced RSV in the URT compared to controls, and complete protection against RSV in the LRT. There were no clinically relevant adverse events associated with vaccination either before or after challenge. These data encourage advanced testing of the SeVRSV vaccine candidate in clinical trials for protection against RSV.


Assuntos
Portadores de Fármacos , Vetores Genéticos , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sendai/genética , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/imunologia , Administração por Inalação , Administração Intranasal , Animais , Anticorpos Antivirais/sangue , Chlorocebus aethiops , Modelos Animais de Doenças , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vacinas contra Vírus Sincicial Respiratório/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA